Диетические... Волосы Аксессуары

Стивен Строгац - Удовольствие от X. Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире. Читать онлайн "удовольствие от х"

Математика - самый точный и универсальный язык науки, но можно ли с помощью цифр объяснить человеческие чувства? Формулы любви, семена хаоса и романтические дифференциальные уравнения - Т&P публикуют главу из книги одного из лучших преподавателей математики в мире Стивена Строгаца «Удовольствие от Х» , выпущенную издательством «Манн, Иванов и Фербер».

Весной, - писал Теннисон, - воображение молодого человека с легкостью поворачивается к мыслям о любви. Увы, потенциальный партнер молодого человека может иметь собственные представления о любви, и тогда их отношения будут полны бурных взлетов и падений, которые делают любовь столь волнующей и столь болезненной. Одни страдальцы от безответной ищут объяснение этих любовных качелей в вине, другие - в поэзии. А мы проконсультируемся у исчислений.

Представленный ниже анализ будет насмешливо-ироничным, но он затрагивает серьезные темы. К тому же если понимание законов любви может от нас ускользнуть, то законы неодушевленного мира в настоящее время хорошо изучены. Они принимают форму дифференциальных уравнений, описывающих изменение взаимосвязанных переменных от момента к моменту в зависимости от их текущих значений. Возможно, у таких уравнений мало общего с романтикой, но они хотя бы могут пролить свет на то, почему, по словам другого поэта, «путь истинной любви никогда не был гладким». Чтобы проиллюстрировать метод дифференциальных уравнений, предположим, что Ромео любит Джульетту, но в нашей версии этой истории Джульетта - ветреная возлюбленная. Чем больше Ромео любит ее, тем сильнее она хочет от него спрятаться. Но когда Ромео охладевает к ней, он начинает казаться ей необыкновенно привлекательным. Однако юный влюбленный склонен отражать ее чувства: он пылает, когда она его любит, и остывает, когда она его ненавидит.

Что происходит с нашими несчастными влюбленными? Как любовь их поглощает и уходит с течением времени? Вот где дифференциальное исчисление приходит на помощь. Составив уравнения, обобщающие усиление и ослабление чувств Ромео и Джульетты, а затем решив их, мы сможем предсказать ход отношений этой пары. Окончательным прогнозом для нее будет трагически бесконечный цикл любви и ненависти. По крайней мере четверть этого времени у них будет взаимная любовь.

Чтобы прийти к такому выводу, я предположил, что поведение Ромео может быть смоделировано с помощью дифференциального уравнения,

которое описывает, как его любовь ® изменяется в следующее мгновение (dt). Согласно этому уравнению, количество изменений (dR) прямо пропорционально (с коэффициентом пропорциональности a) любви Джульетты (J). Данная зависимость отражает то, что мы уже знаем: любовь Ромео усиливается, когда Джульетта любит его, но это также говорит о том, что любовь Ромео растет прямо пропорционально тому, насколько Джульетта его любит. Это предположение линейной зависимости эмоционально неправдоподобно, но оно позволяет значительно упростить решение уравнения.

Напротив, поведение Джульетты можно смоделировать с помощью уравнения

Отрицательный знак перед постоянной b отражает то, что ее любовь остывает, когда любовь Ромео усиливается.

Единственное, что еще осталось определить, - их изначальные чувства (то есть значения R и J в момент времени t = 0). После этого все необходимые параметры будут заданы. Мы можем использовать компьютер, чтобы медленно, шаг за шагом двигаться вперед, изменяя значения R и J в соответствии с описанными выше дифференциальными уравнениями. На самом деле с помощью основной теоремы интегрального исчисления мы можем найти решение аналитически. Поскольку модель простая, интегральное исчисление выдает пару исчерпывающих формул, которые говорят нам, сколько Ромео и Джульетта будут любить (или ненавидеть) друг друга в любой момент времени в будущем.

Представленные выше дифференциальные уравнения должны быть знакомы студентам-физикам: Ромео и Джульетта ведут себя как простые гармонические осцилляторы. Таким образом, модель предсказывает, что функции R (t) и J (t), описывающие изменение их отношений во времени, будут синусоидами, каждая из них возрастающая и убывающая, но максимальные значения у них не совпадают.

«Глупая идея описать любовные отношения с помощью дифференциальных уравнений пришла мне в голову, когда я был влюблен в первый раз и пытался понять непонятное поведение моей девушки»

Модель можно сделать более реалистичной разными путями. Например, Ромео может реагировать не только на чувства Джульетты, но и на свои собственные. А вдруг он из тех парней, которые настолько боятся, что их бросят, что станет остужать свои чувства. Или относится к другому типу парней, которые обожают страдать - именно за это он ее и любит.

Добавьте к этим сценариям еще два варианта поведения Ромео: он отвечает на привязанность Джульетты либо усилением, либо ослаблением собственной привязанности - и увидите, что в любовных отношениях существуют четыре различных стиля поведения. Мои студенты и студенты группы Питера Кристофера из Вустерского политехнического института предложили назвать представителей этих типов так: Отшельник или Злобный Мизантроп для того Ромео, который охлаждает свои чувства и отстраняется от Джульетты, и Нарциссический Болван и Флиртующий Финк для того, который разогревает свой пыл, но отвергается Джульеттой. (Вы можете придумать собственные имена для всех этих типов).

Хотя приведенные примеры фантастические, описывающие их типы уравнений весьма содержательны. Они представляют собой наиболее мощные инструменты из когда-либо созданных человечеством для осмысления материального мира. Сэр Исаак Ньютон использовал дифференциальные уравнения для открытия тайны движения планет. С помощью этих уравнений он объединил земные и небесные сферы, показав, что и к тем и к другим применимы одинаковые законы движения.

Спустя почти 350 лет после Ньютона человечество пришло к пониманию того, что законы физики всегда выражаются на языке дифференциальных уравнений. Это верно для уравнений, описывающих потоки тепла, воздуха и воды, для законов электричества и магнетизма, даже для атома, где царит квантовая механика.

Во всех случаях теоретическая физика должна найти правильные дифференциальные уравнения и решить их. Когда Ньютон обнаружил этот ключ к тайнам Вселенной и понял его великую значимость, он опубликовал его в виде латинской анаграммы. В вольном переводе она звучит так: «Полезно решать дифференциальные уравнения».

Глупая идея описать любовные отношения с помощью дифференциальных уравнений пришла мне в голову, когда я был влюблен в первый раз и пытался понять непонятное поведение моей девушки. Это был летний роман в конце второго курса колледжа. Я очень напоминал тогда первого Ромео, а она - первую Джульетту. Цикличность наших отношений сводила меня с ума, пока я не понял, что мы оба действовали по инерции, в соответствии с простым правилом «тяни-толкай». Но к концу лета мое уравнение начало разваливаться, и я был еще более озадачен. Оказалось, произошло важное событие, которое я не учел: ее бывший возлюбленный захотел ее вернуть.

В математике мы называем такую задачу задачей о трех телах. Она заведомо неразрешима, особенно в контексте астрономии, где впервые и возникла. После того как Ньютон решил дифференциальные уравнения для задачи о двух телах (что объясняет, почему планеты движутся по эллиптическим орбитам вокруг Солнца), он обратил внимание на задачу о трех телах для Солнца, Земли и Луны. Ни он, ни другие ученые так и не смогли ее решить. Позже выяснилось, что задача о трех телах содержит семена хаоса, то есть в долгосрочной перспективе их поведение непредсказуемо.

Ньютон ничего не знал о динамике хаоса, но, по словам его друга Эдмунда Галлея, пожаловался, что задача о трех телах вызывает головную боль и так часто не дает ему спать, что он больше не будет об этом думать.

Здесь я с вами, сэр Исаак.

The Joy of X

A Guided Tour of Math, from One to Infinity

Издано с разрешения Steven Strogatz, c/o Brockman, Inc.

© Steven Strogatz, 2012 All rights reserved

© Перевод на русский язык, издание на русском языке, оформление. ООО «Манн, Иванов и Фербер», 2014

Все права защищены. Никакая часть электронной версии этой книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами, включая размещение в сети Интернет и в корпоративных сетях, для частного и публичного использования без письменного разрешения владельца авторских прав.

Правовую поддержку издательства обеспечивает юридическая фирма «Вегас-Лекс»

* * *

Эту книгу хорошо дополняют:

Кванты

Скотт Паттерсон

Brainiac

Кен Дженнингс

Moneyball

Майкл Льюис

Гибкое сознание

Кэрол Дуэк

Физика фондового рынка

Джеймс Уэзеролл

Предисловие

У меня есть друг, который, несмотря на свое ремесло (он – художник), страстно увлечен наукой. Всякий раз, когда мы собираемся вместе, он с энтузиазмом рассуждает о последних достижениях в области психологии или квантовой механики. Но стоит нам заговорить о математике – и он чувствует дрожь в коленках, что его сильно огорчает. Он жалуется, что эти странные математические символы не только не поддаются его пониманию, но порой он даже не знает, как их произносить.

На самом деле причина его неприятия математики гораздо глубже. Он никак не возьмет в толк, чем математики вообще занимаются и что имеют в виду, когда говорят, что данное доказательство изящно. Иногда мы шутим, что мне нужно просто сесть и начать его учить с самых азов, буквально с 1 + 1= 2, и углубиться в математику настолько, насколько он сможет.

И хотя эта затея кажется безумной, именно ее я и попытаюсь осуществить в данной книге. Я проведу вас по всем основным разделам науки, от арифметики до высшей математики, чтобы те, кто хотел получить второй шанс, наконец смогли им воспользоваться. И на сей раз вам не придется садиться за парту. Эта книга не сделает вас экспертом в математике. Зато поможет разобраться в том, что изучает данная дисциплина и почему она так увлекательна для тех, кто это понял.

Для того чтобы прояснить, что я имею в виду под жизнью чисел и их поведением, которое мы не можем контролировать, давайте вернемся в отель «Мохнатые лапы». Предположим, что Хамфри как раз собрался передать заказ, но тут ему неожиданно позвонили пингвины из другого номера и тоже попросили такое же количество рыбы. Сколько раз Хамфри должен прокричать слово «рыбка» после получения двух заказов? Если бы он ничего не узнал о числах, то ему пришлось бы кричать столько раз, сколько всего пингвинов в обеих комнатах. Или, используя числа, он мог объяснить повару, что ему нужно шесть рыбок для одного номера и шесть для другого. Но то, что ему действительно необходимо, представляет собой новую концепцию – сложение. Как только он его освоит, он с гордостью скажет, что ему нужно шесть плюс шесть (или, если он позер, двенадцать) рыбок.

Это такой же творческий процесс, как и тот, когда мы только придумывали числа. Так же как числа упрощают подсчет по сравнению с перечислением по одному, сложение упрощает вычисление любой суммы. При этом тот, кто производит подсчет, развивается как математик. По-научному эту мысль можно сформулировать так: использование правильных абстракций приводит к более глубокому проникновению в суть вопроса и большему могуществу при его решении.

Вскоре, возможно, даже Хамфри поймет, что теперь он всегда может производить подсчет.

Однако, несмотря на столь бесконечную перспективу, наше творчество всегда имеет какие-то ограничения. Мы можем решить, что подразумеваем под 6 и +, но как только это сделаем, результаты выражений, подобных 6 + 6, окажутся вне нашего контроля. Здесь логика не оставит нам выбора. В этом смысле математика всегда включает в себя как изобретение, так и открытие: мы изобретаем концепции, но открываем их последствия. Как станет ясно из следующих глав, в математике наша свобода заключается в возможности задавать вопросы и настойчиво искать на них ответы, однако не изобретая их самостоятельно.

2. Каменная арифметика

Как и любое явление в жизни, арифметика имеет две стороны: формальную и занимательную (или игровую).

Формальную часть мы изучали в школе. Там нам объясняли, как работать со столбцами чисел, складывая и вычитая их, как перелопачивать их при выполнении расчетов в электронных таблицах при заполнении налоговых деклараций и подготовки годовых отчетов. Эта сторона арифметики кажется многим важной с практической точки зрения, но совершенно безрадостной.

С занимательной стороной арифметики можно познакомиться только в процессе изучения высшей математики . Тем не менее, она так же естественна, как и любопытство ребенка .

В эссе «Плач математика» Пол Локхарт предлагает изучать числа на более конкретных, чем обычно, примерах: он просит, чтобы мы представили их в виде некоторого количества камней. Например, число 6 соответствует вот такому набору камешков:



Вы вряд ли увидите тут что-то необычное. Так оно и есть. Пока мы не приступим к манипуляциям с числами, они выглядят примерно одинаково. Игра начинается, когда мы получаем задание.

Например, давайте посмотрим на наборы, в которых есть от 1 до 10 камней, и попробуем сложить из них квадраты. Это можно сделать только с двумя наборами – из 4 и 9 камней, поскольку 4 = 2 × 2 и 9 = 3 × 3. Мы получаем эти числа путем возведения в квадрат некоего другого числа (то есть раскладывая камни в виде квадрата).



Вот задача, имеющая большее число решений: надо узнать, из каких наборов получится прямоугольник, если разложить камни в два ряда с равным количеством элементов. Здесь подойдут наборы из 2, 4, 6, 8 или 10 камней; число должно быть четным. Если мы попробуем разложить в два ряда оставшиеся наборы с нечетным количеством камней, то у нас неизменно будет оставаться лишний камень.



Но не все потеряно для этих неудобных чисел! Если взять два таких набора, то лишние элементы найдут себе пару, и сумма получится четной: нечетное число + нечетное число = четное число.



Если распространить эти правила на числа, идущие после 10, и считать, что количество рядов в прямоугольнике может быть больше двух, то некоторые нечетные числа позволят сложить такие прямоугольники. Например, число 15 может составить прямоугольник 3 × 5.



Поэтому хотя 15, несомненно, нечетное число, оно является составным и может быть представлено в виде трех рядов по пять камней в каждом. Точно так же любая запись в таблице умножения дает собственную прямоугольную группу камешков.

Но некоторые числа, вроде 2, 3, 5 и 7, совершенно безнадежны. Из них нельзя выложить ничего, кроме как расположить их в виде простой линии (одного ряда). Эти странные упрямцы – знаменитые простые числа.

Итак, мы видим, что числа могут иметь причудливые структуры, которые наделяют их определенным характером. Но, чтобы представить весь спектр их поведения, надо отстраниться от отдельных чисел и понаблюдать за тем, что происходит во время их взаимодействия.

Например, вместо того чтобы сложить всего два нечетных числа, сложим все возможные последовательности нечетных чисел, начиная с 1:


1 + 3 + 5 + 7 = 16

1 + 3 + 5 + 7 + 9 = 25


Удивительно, но эти суммы всегда оказываются идеальными квадратами. (О том, что 4 и 9 можно представить в виде квадратов, мы уже говорили, а для 16 = 4 × 4 и 25 = 5 × 5 это тоже верно.) Быстрый подсчет показывает, что это правило справедливо и для бо́льших нечетных чисел и, видимо, стремится к бесконечности. Но какая же связь между нечетными числами с их «лишними» камнями и классически симметричными числами, образующими квадраты? Правильно располагая камешки, мы можем сделать ее очевидной, что является отличительной чертой изящного доказательства.

Ключом к нему будет наблюдение, что нечетные числа можно представить в виде равносторонних уголков, последовательное наложение которых друг на друга образует квадрат!



Подобный способ рассуждений представлен еще в одной недавно вышедшей книге. В очаровательном романе Ёко Огавы The Housekeeper and the Professor («Домработница и профессор») рассказывается о проницательной, но необразованной молодой женщине и ее десятилетнем сыне. Женщину наняли ухаживать за пожилым математиком, у которого из-за полученной черепно-мозговой травмы в краткосрочной памяти сохраняется информация только о последних 80 минутах жизни. Потерявшись в настоящем, один в своем убогом коттедже, ничего не имея, кроме чисел, профессор пытается общаться с домработницей единственным известным ему способом: спрашивая о размере ее обуви или дате рождения и ведя с нею светскую беседу о ее расходах. Профессор также питает особую симпатию к сыну экономки, которого называет Рут (Root – корень), потому что у мальчика сверху плоская голова, и это напоминает ему обозначение в математике квадратного корня √.

Однажды профессор предлагает мальчику простую задачу – найти сумму всех чисел от 1 до 10. После того как Рут аккуратно складывает все числа между собой и возвращается с ответом (55), профессор просит его поискать более простой способ. Сможет ли он найти ответ без обычного сложения чисел? Рут пинает стул и кричит: «Это несправедливо!»

Мало-помалу домработница тоже втягивается в мир чисел и сама тайно пытается решить эту задачу. «Я не понимаю, почему так увлеклась детской задачкой, которая не имеет никакой практической пользы», – говорит она. «Сначала я хотела угодить профессору, но постепенно это занятие превратилось в сражение между мной и числами. Когда я просыпалась утром, уравнение уже ждало меня:


1 + 2 + 3 + … + 9 + 10 = 55,


и весь день следовало по пятам, будто было выжжено на сетчатке моих глаз, и его никак не получалось проигнорировать». Существует несколько путей решения задачи профессора (интересно, сколько сможете найти вы). Профессор сам предлагает способ рассуждений, который мы уже применили выше. Он интерпретирует сумму от 1 до 10 в виде треугольника из камешков, с одним камешком в первой строке, двумя во второй и так далее, до десяти камешков в десятом ряду.



Эта картинка дает четкое представление о негативном пространстве. Оказывается, оно заполнено только наполовину, что показывает направление творческого прорыва. Если скопировать треугольник из камешков, перевернуть его и соединить с уже существующим, то получится нечто весьма простое: прямоугольник с десятью рядами по 11 камешков в каждом, причем общее число камней составит 110.



Так как исходный треугольник – половина этого прямоугольника, то вычисляемая сумма чисел от 1 до 10 должна быть половиной 110, то есть 55.

Представление числа в виде группы камешков может показаться необычным, но на самом деле так же старо, как и сама математика. Слово «вычислять» (англ. calculate ) отражает это наследие и происходит от латинского calculus , означающего «галька», которую римляне использовали при выполнении вычислений. Чтобы получать удовольствие от манипуляций с числами, не обязательно быть Эйнштейном (что по-немецки означает «один камень»), но, возможно, умение жонглировать камешками облегчит вам это занятие.

Слэм-данк – вид броска в баскетболе, при котором игрок выпрыгивает вверх и одной или двумя руками бросает мяч сквозь кольцо сверху вниз. Прим. перев.

Джей Симпсон – известный игрок в американский футбол. Сыграл роль детектива Нортберга в знаменитой трилогии «Голый пистолет». Был обвинен в убийстве бывшей жены и ее друга и оправдан, невзирая на улики. Прим. перев.

Чтобы ознакомиться с увлекательной идеей о том, что числа живут собственной жизнью, а математика может рассматриваться как одна из форм искусства, см. P. Lockhart, A Mathematician’s Lament (Bellevue Literary Press, 2009). Прим. ред.: В русском интернете много переводов эссе Локхарда «Плач математика». Вот один из них: http://mrega.ru/biblioteka/obrazovanie/130-plachmatematika.html. Здесь и далее сноски, оформленные в фигурные скобки, относятся к примечаниям автора.

Эта известная фраза взята из эссе E. Wigner The unreasonable effectiveness of mathematics in the natural sciences, Communications in Pure and Applied Mathematics, Vol. 13, No. 1, (February 1960), рр. 1–14. Онлайн-версия доступна на http://www.dartmouth.edu/~matc/MathDrama/reading/Wigner.html . Для дальнейших размышлений на эту тему, а также о том, была математика изобретена или открыта, см. M. Livio, Is God a Mathematician? (Simon and Schuster, 2009) и R. W.Hamming, The unreasonable effectiveness of mathematics, American Mathematical Monthly, Vol. 87, No. 2 (February 1980).

Написанием данной главы я во многом обязан двум замечательным книгам: полемическому эссе P. Lockhart, A Mathematician’s Lament (Bellevue Literary Press, 2009) и роману Y. Ogawa, The Housekeeper and the Professor (Picador, 2009). Прим. ред.: Об эссе Локхарда «Плач математика» сказано в комментарии 1. Перевода романа Ёко Огавы на русский язык пока нет.

Молодым читателям, которые хотят изучать числа и их структуры, см. H. M. Enzensberger, The Number Devil (Holt Paperbacks, 2000). Прим. ред.: Среди многочисленных русских книг о началах математики, нестандартных подходах к ее изучению, развитии математического творчества у детей и тому подобных тем, созвучных следующим главам книги, укажем пока следующие: Пухначев Ю., Попов Ю. Математика без формул. М.: АО «Столетие», 1995; Остер Г. Задачник. Ненаглядное пособие по математике. М.: АСТ, 2005; Рыжик В. И. 30 000 уроков математики: Книга для учителя. М.: Просвещение, 2003: Тучнин Н. П. Как задать вопрос? О математическом творчестве школьников. Ярославль: Верх. – Волж. кн. изд-во, 1989.

Превосходные, но более сложные примеры визуализации математических образов представлены в R. B. Nelsen, Proofs without Words (Mathematical Association of America, 1997).

В один из майских дней прошлого года, я сидела ассистентом на контрольной работе по математике в 10 классе. Скучая, я взяла с учительского стола "лишний" вариант работы и начала его решать. Работа была сделана в формате ЕГЭ по математике, которую я закончила изучать в далёком 1989 году, выпустившись из средней школы. Однако, без особых усилий мне удалось решить 11 заданий в части В — больше, чем многие писавшие работу в тот день . Одна из учениц, +Юлия Соболева , с удивлением наблюдала за тем, как я решала, а после подошла ко мне:

Я впервые вижу, как ассистент, не являющийся учителем математики, сидит и решает. Простите за вопрос, но Вам это как-то в жизни пригодилось?

Вопрос десятиклассницы не поставил меня в тупик. Дело в том, что с математикой в школе у меня была любовь без взаимности: в том смысле, что математика меня любила, а я её — нет. То есть, математика всегда мне давалась легко, каких-то проблем не было, всех своих учителей математики тоже вспоминаю с теплотой... Но вот не любила я математику, и всё тут! Вот так бывает. А, поступив в гуманитарный вуз (по образованию я учитель истории), я вдруг стала остро ощущать нехватку математики. Мне стало казаться, что я глупею не по дням, а по часам. А потому, на 1 —2 курсах, чтобы заполнить эту пустоту, сама (!) брала и решала сборники олимпиадных задач, по-новой прорешала весь учебник за выпускной класс. И — о, чудо! Ясность ума и логичность мышления начали понемногу возвращаться. А потом, учась уже на 3 курсе, прочитала книгу Л. Кэрролла "Логическая игра" (спасибо Сергею Михельсону), увлеклась логикой и потребность в занятиях математикой как-то отпала. А уж когда, спустя пару лет после окончания института, начала преподавать экономику, то математика прочно обосновалась в моём сознании — задачки-то надо как-то решать.
К чему я написала всё это? Столь длинное предисловие призвано объяснить: почему я с удовольствием приняла предложение +Наталья Шанина , ассистента менеджера проектов издательства +Манн, Иванов и Фербер , взять на рецензию книгу "Удовольствие от Х" (такой вот словесный каламбур получился).
Книга понравилась с первых страниц: люблю, когда показывают красоту математики. А ещё люблю, когда в простом находятся закономерности. Поэтому, уже в первой главе, меня потрясло открытие: если складывать последовательно нечётные числа, то в сумме мы будем получать квадраты чисел, соответствующих количеству взятых нечётных чисел в ряду. Затем — что нечётные числа образуют уголки, из которых можно сделать квадрат, вот такой, к примеру:

По мере чтения книги, я совершала для себя новые открытия. Питая любовь к разным алгоритмам (стремлюсь вывести алгоритм даже в каких-то творческих и околотворческих процессах), не могла не отметить простой алгоритм возведения в квадрат чисел до 50. Настолько он мне понравился, что я даже зарисовала его в блокноте.


Геометрический способ решения квадратных уравнений привёл меня в восторг: вот вроде бы никогда не испытывала трудности в их решении, но, между тем, формулы дискриминанта и корней казались чем-то абстрактным. Но, если добавить геометрию, всё становится очевидным и понятным.

А задачи? Ох, эти задачи, требующие не столько математики, сколько логики и внимательности. Кто из вас не встречал задачки типа: "Если включить кран с холодной водой, то ванна наполнится за полчаса, если с горячей — то за час. Сколько времени потребуется, чтобы заполнить ванну, когда включены оба крана?" Кажущаяся простота задачи обычно приводит к ответу "45 минут". ответу, разумеется, неверному. А вот сможете ли вы объяснить, почему правильный ответ — "20 минут"? Да ещё сделать это разными способами? А вот автор книги делает это блестяще.

Даже чтение тех разделов книги, которые для меня оказались сложными (ну, не помню я уже математику в таком объёме), далось легко. Не всё поняла, но удовольствие от чтения получила и в этом случае. Потому, что автор во всём видит конкретное применение математических законов в окружающей действительности. Статистика, онкология, даже выбор партнёра в браке — везде есть следы математики. А особенно умилила эта цитата: "В те далёкие времена, когда Google ещё не существовало, поиск в сети был безнадёжным занятием" .


Мешали при чтении только две вещи.

  1. Ну, не люблю я читать в электронном формате. Тем более, что в случае с математикой, сразу хочется что-то порешать/сосчитать. Если бы читала бумажную книгу, писала бы прямо на полях и свободных страницах — книги издательства +Манн, Иванов и Фербер изданы так, что изначально предполагают, что найдутся читатели, которые будут не только читать книгу, но и писать в ней.
  2. В книге большое количество примечаний. Издательство традиционно оставляет в тексте книги лишь ссылки с краткой информацией, а развёрнутые примечания делает в виде концевых сносок. Для меня такой формат чтения неудобен (а в электронном формате неудобен вдвойне). Скакать по книге взад/вперёд я не люблю. А читать примечания после прочтения основного текста нелогично. В итоге просто просмотрела их глазами. Хотя они заслуживают того, чтобы быть частью основного текста: написаны интересно, в той же стилистике, что и текст книги.

Порекомендовала бы эту книгу не только любителям математики, но и старшеклассникам и студентам. Чтобы обеспечить понимание каких-то вещей, которые в школьном или вузовском курсе кажутся слишком абстрактными. Ну, и учителям математики, конечно. Вот +Наталья Львова уже прочитала (отзыв ). Очень хотела бы порекомендовать эту книгу и +Diana Sonina , но — увы и ах! — дочь идёт тем же путём, что и мама. Математика даётся легко, она призёр муниципальной олимпиады, а то, что они делают со своим учителем математики со степенями в исследовательской работе (с которой не раз занимала призовые места на различных конференциях), решая олимпиадные задачи для старшеклассников, моему пониманию труднодоступно. Но при этом про математику даже слышать не хочет. Надо — делает, но без удовольствия. А, между тем, отвечая своей ученице на вопрос о том, как мне пригодилась математика в жизни, помимо прагматичных каких-то вещей, у меня всегда припасён ответ: учиться в школе надо хорошо, в том числе, и для того, чтобы потом суметь помочь в учёбе собственным детям. Но дочери моя помощь особо и не требуется — справляется сама. А потому вопрос так и остаётся открытым: почему, при отличных стартовых условиях — хороший учитель, неплохие способности к предмету, находятся дети, которые не любят математику? На днях обсуждала это с +Marina Kurvits , готова обсудить это и с другими "знакомыми математиками" — +Jüri Kurvits и +Ljudmilla Rozhdestvenskaja . В чём причина? И н адо ли как-то менять ситуацию? Вот у меня она разрешилась в юности. Но мне до сих пор не даёт покоя мысль, что, не полюбив математику раньше, я упустила какие-то возможности в своей жизни...

Купить книгу на Озоне >>>
Купить книгу в Лабиринте >>>
Информация о книге на сайте издательства >>>

The Joy of X

A Guided Tour of Math, from One to Infinity

Издано с разрешения Steven Strogatz, c/o Brockman, Inc.

© Steven Strogatz, 2012 All rights reserved

© Перевод на русский язык, издание на русском языке, оформление. ООО «Манн, Иванов и Фербер», 2014

Все права защищены. Никакая часть электронной версии этой книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами, включая размещение в сети Интернет и в корпоративных сетях, для частного и публичного использования без письменного разрешения владельца авторских прав.

Правовую поддержку издательства обеспечивает юридическая фирма «Вегас-Лекс»

* * *

Эту книгу хорошо дополняют:

Кванты

Скотт Паттерсон

Brainiac

Кен Дженнингс

Moneyball

Майкл Льюис

Гибкое сознание

Кэрол Дуэк

Физика фондового рынка

Джеймс Уэзеролл

Предисловие

У меня есть друг, который, несмотря на свое ремесло (он – художник), страстно увлечен наукой. Всякий раз, когда мы собираемся вместе, он с энтузиазмом рассуждает о последних достижениях в области психологии или квантовой механики. Но стоит нам заговорить о математике – и он чувствует дрожь в коленках, что его сильно огорчает. Он жалуется, что эти странные математические символы не только не поддаются его пониманию, но порой он даже не знает, как их произносить.

На самом деле причина его неприятия математики гораздо глубже. Он никак не возьмет в толк, чем математики вообще занимаются и что имеют в виду, когда говорят, что данное доказательство изящно. Иногда мы шутим, что мне нужно просто сесть и начать его учить с самых азов, буквально с 1 + 1= 2, и углубиться в математику настолько, насколько он сможет.

И хотя эта затея кажется безумной, именно ее я и попытаюсь осуществить в данной книге. Я проведу вас по всем основным разделам науки, от арифметики до высшей математики, чтобы те, кто хотел получить второй шанс, наконец смогли им воспользоваться. И на сей раз вам не придется садиться за парту. Эта книга не сделает вас экспертом в математике. Зато поможет разобраться в том, что изучает данная дисциплина и почему она так увлекательна для тех, кто это понял.

Для того чтобы прояснить, что я имею в виду под жизнью чисел и их поведением, которое мы не можем контролировать, давайте вернемся в отель «Мохнатые лапы». Предположим, что Хамфри как раз собрался передать заказ, но тут ему неожиданно позвонили пингвины из другого номера и тоже попросили такое же количество рыбы. Сколько раз Хамфри должен прокричать слово «рыбка» после получения двух заказов? Если бы он ничего не узнал о числах, то ему пришлось бы кричать столько раз, сколько всего пингвинов в обеих комнатах. Или, используя числа, он мог объяснить повару, что ему нужно шесть рыбок для одного номера и шесть для другого. Но то, что ему действительно необходимо, представляет собой новую концепцию – сложение. Как только он его освоит, он с гордостью скажет, что ему нужно шесть плюс шесть (или, если он позер, двенадцать) рыбок.

Это такой же творческий процесс, как и тот, когда мы только придумывали числа. Так же как числа упрощают подсчет по сравнению с перечислением по одному, сложение упрощает вычисление любой суммы. При этом тот, кто производит подсчет, развивается как математик. По-научному эту мысль можно сформулировать так: использование правильных абстракций приводит к более глубокому проникновению в суть вопроса и большему могуществу при его решении.

Вскоре, возможно, даже Хамфри поймет, что теперь он всегда может производить подсчет.

Однако, несмотря на столь бесконечную перспективу, наше творчество всегда имеет какие-то ограничения. Мы можем решить, что подразумеваем под 6 и +, но как только это сделаем, результаты выражений, подобных 6 + 6, окажутся вне нашего контроля. Здесь логика не оставит нам выбора. В этом смысле математика всегда включает в себя как изобретение, так и открытие: мы изобретаем концепции, но открываем их последствия. Как станет ясно из следующих глав, в математике наша свобода заключается в возможности задавать вопросы и настойчиво искать на них ответы, однако не изобретая их самостоятельно.

2. Каменная арифметика

Как и любое явление в жизни, арифметика имеет две стороны: формальную и занимательную (или игровую).

Формальную часть мы изучали в школе. Там нам объясняли, как работать со столбцами чисел, складывая и вычитая их, как перелопачивать их при выполнении расчетов в электронных таблицах при заполнении налоговых деклараций и подготовки годовых отчетов. Эта сторона арифметики кажется многим важной с практической точки зрения, но совершенно безрадостной.

С занимательной стороной арифметики можно познакомиться только в процессе изучения высшей математики {3} . Тем не менее, она так же естественна, как и любопытство ребенка {4} .

В эссе «Плач математика» Пол Локхарт предлагает изучать числа на более конкретных, чем обычно, примерах: он просит, чтобы мы представили их в виде некоторого количества камней. Например, число 6 соответствует вот такому набору камешков:

Вы вряд ли увидите тут что-то необычное. Так оно и есть. Пока мы не приступим к манипуляциям с числами, они выглядят примерно одинаково. Игра начинается, когда мы получаем задание.

Например, давайте посмотрим на наборы, в которых есть от 1 до 10 камней, и попробуем сложить из них квадраты. Это можно сделать только с двумя наборами – из 4 и 9 камней, поскольку 4 = 2 × 2 и 9 = 3 × 3. Мы получаем эти числа путем возведения в квадрат некоего другого числа (то есть раскладывая камни в виде квадрата).

Вот задача, имеющая большее число решений: надо узнать, из каких наборов получится прямоугольник, если разложить камни в два ряда с равным количеством элементов. Здесь подойдут наборы из 2, 4, 6, 8 или 10 камней; число должно быть четным. Если мы попробуем разложить в два ряда оставшиеся наборы с нечетным количеством камней, то у нас неизменно будет оставаться лишний камень.

Но не все потеряно для этих неудобных чисел! Если взять два таких набора, то лишние элементы найдут себе пару, и сумма получится четной: нечетное число + нечетное число = четное число.

Если распространить эти правила на числа, идущие после 10, и считать, что количество рядов в прямоугольнике может быть больше двух, то некоторые нечетные числа позволят сложить такие прямоугольники. Например, число 15 может составить прямоугольник 3 × 5.

Поэтому хотя 15, несомненно, нечетное число, оно является составным и может быть представлено в виде трех рядов по пять камней в каждом. Точно так же любая запись в таблице умножения дает собственную прямоугольную группу камешков.

Но некоторые числа, вроде 2, 3, 5 и 7, совершенно безнадежны. Из них нельзя выложить ничего, кроме как расположить их в виде простой линии (одного ряда). Эти странные упрямцы – знаменитые простые числа.

Итак, мы видим, что числа могут иметь причудливые структуры, которые наделяют их определенным характером. Но, чтобы представить весь спектр их поведения, надо отстраниться от отдельных чисел и понаблюдать за тем, что происходит во время их взаимодействия.

Например, вместо того чтобы сложить всего два нечетных числа, сложим все возможные последовательности нечетных чисел, начиная с 1:

1 + 3 + 5 + 7 = 16

1 + 3 + 5 + 7 + 9 = 25

Удивительно, но эти суммы всегда оказываются идеальными квадратами. (О том, что 4 и 9 можно представить в виде квадратов, мы уже говорили, а для 16 = 4 × 4 и 25 = 5 × 5 это тоже верно.) Быстрый подсчет показывает, что это правило справедливо и для бо́льших нечетных чисел и, видимо, стремится к бесконечности. Но какая же связь между нечетными числами с их «лишними» камнями и классически симметричными числами, образующими квадраты? Правильно располагая камешки, мы можем сделать ее очевидной, что является отличительной чертой изящного доказательства. {5}

Ключом к нему будет наблюдение, что нечетные числа можно представить в виде равносторонних уголков, последовательное наложение которых друг на друга образует квадрат!

Подобный способ рассуждений представлен еще в одной недавно вышедшей книге. В очаровательном романе Ёко Огавы The Housekeeper and the Professor («Домработница и профессор») рассказывается о проницательной, но необразованной молодой женщине и ее десятилетнем сыне. Женщину наняли ухаживать за пожилым математиком, у которого из-за полученной черепно-мозговой травмы в краткосрочной памяти сохраняется информация только о последних 80 минутах жизни. Потерявшись в настоящем, один в своем убогом коттедже, ничего не имея, кроме чисел, профессор пытается общаться с домработницей единственным известным ему способом: спрашивая о размере ее обуви или дате рождения и ведя с нею светскую беседу о ее расходах. Профессор также питает особую симпатию к сыну экономки, которого называет Рут (Root – корень), потому что у мальчика сверху плоская голова, и это напоминает ему обозначение в математике квадратного корня √.

Однажды профессор предлагает мальчику простую задачу – найти сумму всех чисел от 1 до 10. После того как Рут аккуратно складывает все числа между собой и возвращается с ответом (55), профессор просит его поискать более простой способ. Сможет ли он найти ответ без обычного сложения чисел? Рут пинает стул и кричит: «Это несправедливо!»

Мало-помалу домработница тоже втягивается в мир чисел и сама тайно пытается решить эту задачу. «Я не понимаю, почему так увлеклась детской задачкой, которая не имеет никакой практической пользы», – говорит она. «Сначала я хотела угодить профессору, но постепенно это занятие превратилось в сражение между мной и числами. Когда я просыпалась утром, уравнение уже ждало меня:

1 + 2 + 3 + … + 9 + 10 = 55,





Июл 25, 2017

Удовольствие от X. Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире Стивен Строгац

(Пока оценок нет)

Название: Удовольствие от X. Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире

О книге «Удовольствие от X. Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире» Стивен Строгац

Эта книга способна в корне изменить ваше отношение к математике. Она состоит из коротких глав, в каждой из которых вы откроете для себя что-то новое. Вы узнаете насколько полезны числа для изучения окружающего мира, поймете, в чем прелесть геометрии, познакомитесь с изяществом интегральных исчислений, убедитесь в важности статистики и соприкоснетесь с бесконечностью. Автор объясняет фундаментальные математические идеи просто и элегантно, приводя блистательные примеры, понятные каждому.

На русском языке публикуется впервые.

На нашем сайте о книгах lifeinbooks.net вы можете скачать бесплатно без регистрации или читать онлайн книгу «Удовольствие от X. Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире» Стивен Строгац в форматах epub, fb2, txt, rtf, pdf для iPad, iPhone, Android и Kindle. Книга подарит вам массу приятных моментов и истинное удовольствие от чтения. Купить полную версию вы можете у нашего партнера. Также, у нас вы найдете последние новости из литературного мира, узнаете биографию любимых авторов. Для начинающих писателей имеется отдельный раздел с полезными советами и рекомендациями, интересными статьями, благодаря которым вы сами сможете попробовать свои силы в литературном мастерстве.