Диетические... Волосы Аксессуары

Ген речи. Генетика речи. FOXP2 в эволюции

Сравнение целых геномов разных видов помогло разобраться в том, почему люди и шимпанзе столь отличаются друг от друга, несмотря на большое сходство их геномов. За последние годы были секвенированы геномы тысяч видов (в основном микроорганизмов). Оказалось, что наибольшее значение имеет то, в какой именно части генома происходят изменения, а не общее их количество. Другими словами, для создания нового вида не нужно сильно изменять геном. Для того чтобы наш общий с шимпанзе предок превратился в человека, не было необходимости ускорять ход молекулярных часов в целом. Секрет состоял в том, чтобы быстро внести изменения в те места, где они окажут значительное влияние на функционирование всего организма. Таким примером, наряду с последовательностью HAR1 , является быстроизменяющаяся последовательность, содержащееся в гене FOXP2.

Известно, что она связана с речью: в 2001 г. было показано, что люди, несущие мутации в этом гене, не способны производить некоторые быстрые движения мышц лица, необходимые для артикуляции слов, несмотря на то что они обладают нормальными когнитивными речевыми способностями. В норме данная последовательность имеет несколько отличий от аналогичной у шимпанзе: две замены нуклеотидов, изменивших ее белковый продукт, и множество других замен, которые, видимо, повлияли на то, как, когда и где этот белок используется в теле человека.

Недавнее открытие пролило некоторый свет на вопрос о том, когда у гоминидов появилась пригодная для речи версия FOXP2. В 2007 г. ученые из Института эволюционной антропологии Макса Планка в Лейпциге секвенировали FOXP2, извлеченный из останков неандертальцев , и обнаружили, что эти вымершие люди обладали современной человеческой версией этого гена. Вполне вероятно, что они могли разговаривать так же, как и мы. Новейшие оценки времени обособления эволюционных линий неандертальцев и современного человека указывают на то, что новая форма FOXP2 появилась не позднее полумиллиона лет назад. Однако большинство признаков, отличающих человеческую речь от звуковой коммуникации у других животных, обусловлены не физическими данными, а

Как так получилось, что мы, люди, можем говорить, а наши довольно-таки близкие родственники шимпанзе – нет? Американские специалисты провели масштабное исследование, в ходе которого попытались разобраться, что стало истинной причиной столь критического отличия. Так ли важно развитие мозга с годами или же за всё отвечают наши гены?

Вербальное общение людей между собой считается одной из основных отличительных черт человека, отделяющих его от всего остального мира животных. Пусть эта граница условна и те или иные проявления речи (равно как и осознания, восприятия произносимых и слышимых звуков) у животных всё же имеются. Но неоспоримый факт, что до уровня человека они не дотягивают.

В чём заключается уникальность Homo sapiens , решили доподлинно выяснить генетики из университетов Калифорнии в Лос-Анджелесе (UCLA) и Эмори (Emory University). Они предположили, что "виной" тому наши гены. Впрочем, учёные в этом были, конечно же, далеко не первыми, но данная группа специалистов впервые провела столь обширное исследование генетических основ появления речи у людей.

Довольно давно известно, что центральным геном, ответственным за правильное развитие речи у человека, является FOXP2 . Этот ген кодирует белок с тем же названием, благодаря которому FOXP2 может контролировать работу других генов.

Прежние исследования показали , что когда этот ген инактивирован, у людей развиваются серьёзные проблемы с речью (составлением фраз) и произношением звуков.




Однако FOXP2 присутствует и у некоторых животных (птиц, рептилий и даже рыб). По логике получается, что за появление речи у человека отвечает не он. Одни научные группы стали искать другие "гены речи", другие – продолжили детальное изучение работы FOXP2.

Дальнейшие исследования показали, что FOXP2 почти не изменялся во время эволюции млекопитающих (вплоть до времени разделения человека и шимпанзе). Однако около 200 тысяч лет назад ген начал приобретать свои "человеческие" черты.

Последнее было установлено группой немецких учёных в 2002 году. Биологи тогда обнаружили , что у шимпанзе белки, кодируемые версией этого гена, имеют некоторые отличия от человеческих. Это может означать, что у людей FOXP2 функционирует по-другому. Отсюда и уникальные лингвистические способности.

Ещё один шаг к пониманию происходящих процессов сделали в нынешнем году генетики из института эволюционной антропологии Макса Планка (Max-Planck-Institut für evolutionäre Anthropologie). Они внедрили человеческую версию гена в ДНК мыши.

Конечно, грызуны от этого не заговорили по-человечески: всё-таки способность к речи - навык комплексный. Но проведённые тогда исследования показали, что вокализация животных изменилась. Кроме того, в отделах мозга мышей (тех, что связаны с речью у людей) нейроны изменили своё строение и активность. А это уже что-то!

Более детальным исследованием занялась группа учёных под руководством Женевьевы Конопки (Genevieve Konopka) и Дэниела Гешвинда (Daniel Geschwind) из университета Калифорнии в Лос-Анджелесе. Биологи вырастили в чашках Петри колонии клеток мозга, у которых отсутствовал ген FOXP2.

Затем одной части клеток была внедрена человеческая версия гена, а второй - от шимпанзе. После этого специалисты проследили за экспрессией генов, процессом перевода информации ДНК в работающие белки клетки и зарегистрировали, на каких генах и как отразились эти изменения.

В своей статье в журнале Nature учёные пишут, что из сотен подвластных FOXP2 генов удалось вычленить 116, которые реагировали на активацию человеческой версии не так, как на ген, взятый у обезьян. "Определив состав этой группы, мы заполучили в свои руки набор инструментов, позволяющих влиять на человеческую речь на молекулярном уровне", - заявляет Конопка.

Эта подборка генов, скорее всего, тоже участвовала в эволюции речи и языка, так как многие её составляющие контролируют развитие мозга или же связаны с познавательными способностями. Часть генов определяет появление и контролирует движение тканей лица и гортани (которые, как известно, активно участвуют в артикуляции).

Предварительные исследования Гешвинда эволюции тех самых 116 генов показали, что у них была примерно одна и та же история. "Возможно, они изменялись все вместе, как бы в связке", - рассуждает учёный.

Дэниел также отмечает, что, несмотря на доказанную важность FOXP2, он не стал бы называть его "геном речи". Возможно, FOXP2 – лишь часть некой группы, или же он не является первым звеном цепи (его работой также управляет какая-то неизвестная доселе субстанция), поясняет биолог.

Гешвинд говорит об этом не просто так. Его группа провела второй эксперимент: сравнила активацию генов во взрослых тканях мозга человека и шимпанзе. Оказалось, что существует частичное совпадение в работе тех генов, активность которых отличалась в мозге людей, и тех, что по-другому контролировались человеческой версией FOXP2.



Пока рано делать какие-то выводы, но велика вероятность, что большая часть различий в мозге Homo sapiens и шимпанзе (по языковой линии) объясняется лишь двумя небольшими изменениями в одном гене. "Если это правда, было бы просто невероятно", - говорит Вольфганг Энард (Wolfgang Enard) из института эволюционной антропологии Макса Планка. (От себя добавим, что это снова подчеркнёт плавность перехода способностей от шимпанзе к человеку.)

"Эта работа – начальная точка, основа всех будущих молекулярных исследований, посвящённых изучению эволюции языка", - добавляет нейробиолог Пашко Ракич (Paško Rakić) из Йеля.

Прокомментировала нынешнюю работу и профессор Фаранех Варгха-Кхадем (Faraneh Vargha-Khadem) из университетского колледжа Лондона. Она занимается нарушениями речи пациентов, обусловленными генетическими отклонениями (и в активности FOXP2 в частности).

Профессор соглашается с выводами нынешней научной группы и отмечает, что у её больных часто встречается искривлённая форма нижней части лица (что ещё раз подтверждает: влияние FOXP2 – многогранное). Возможно, шимпанзе не могут говорить из-за тех же физических отклонений. Человек не мог бы танцевать, не будь у него ног, сравнивает Варгха-Кхадем.

Да, никто из наших братьев меньших, включая столь близких нам шимпанзе, не может общаться так же осмысленно и полноценно, но при этом лошади, к примеру, используют некое подобие слов , обезьяны вроде бы понимают грамматику и различают голоса , а сурикаты – интонации сородичей . Может, они и облекли бы свои мысли в слова, но у них нет соответствующих генетических предпосылок.

Фаранех поддерживает Дэниела и в вопросе комплексного подхода к развитию речи у людей. Не стоит концентрироваться лишь на одном гене и его многочисленных подопечных, считает она.

Кроме того, Варгха-Кхадем предполагает, что FOXP2 дал человеку лишь физическую возможность заговорить, но это не объясняет, как абстрактные идеи материализовались в древнем человеческом мозгу в слова, как появились высшие познавательные навыки. И с этим ещё предстоит разбираться.

Впрочем, и собственно с произношением учёным работать ещё очень долго. Ведь если вдуматься, "движение всех тех мускулов, что ответственны за произношение, – это тоже маленькое чудо", – говорит Варгха-Кхадем. Дабы воспроизвести последовательности звуков так, чтобы они были понятны слушателю, нужно тоже пройти очень долгий путь развития.

Каких-то особенных, невероятных преимуществ у человека пока обнаружено не было. Может, некоторые животные уже двигаются по этому пути, постепенно и незаметно догоняя людей?

Ген языка

В 1990 году в Лондоне была исследована семья с необычной наследственной патологией. Члены семьи не испытывали проблем в интеллектуальной сфере, но у всех были какие-либо нарушения речевой функции. Генетические исследования привели к открытию единственного поврежденного гена, ответственного за патологию, называемого FOXP2. Его тут же окрестили «геном языка».

Теперь, однако, известно, что FOXP2 является одним из генов-регуляторов, вовлеченным во многие процессы, не имеющие ничего общего с языком. Но самое худшее для «гена языка» в том, что его варианты были открыты практически у всех организмов, вплоть до дрожжевых грибков. Белок, за выработку которого он отвечает, отличается у людей и дрожжей очень незначительно.

Для некоторых исследователей это стало доказательством того, что язык вообще не имеет генетического субстрата. Однако на эту проблему можно смотреть и по-другому. Речь можно рассматривать как сложный комплексный процесс, в котором гену FOXP2 отведена специфическая роль регулирования последовательных движений лицевых мышц. Небольшая мутация гена может приводить к неточности работы мускулатуры и, как следствие, к невнятной речи.

FOXP2 принял свою нынешнюю форму около 200-120 тысяч лет назад. Это была очень интересная эра. Как показывают ископаемые остатки, именно в это период произошла последняя миграция наших предков из Африки.

Из книги Язык животных: подходы, результаты, перспективы… автора Резникова Жанна Ильинична

Теоpетико-информационный подход к исследованию «языка» животных Суть этого подхода в том, что в экспериментах испытуемым животным предлагается передать заранее известное экспериментатору количество информации, и при этом измеряется время, затраченное на ее передачу,

Из книги Обезьяны, человек и язык автора Линден Юджин

Часть 1 ШИМПАНЗЕ В ХРАМЕ ЯЗЫКА 1. ПРОБЛЕМА: ШИМПАНЗЕ, КОТОРЫЙ УМЕЕТ РУГАТЬСЯ Иосиф Флавий, историк времен древнего Рима, в своих «Иудейских древностях» писал, что, когда человек был изгнан из рая, он в числе прочего утратил способность разговаривать с животными.

Из книги Основы зоопсихологии автора Фабри Курт Эрнестович

Проблема развития языка у детей Общеизвестно, что ребенок не рождается умеющим говорить. Кроме того, было обнаружено, что если младенец в детстве не общается со взрослыми или с другими, уже умеющими говорить детьми, то он так и не сможет овладеть речью, даже если

Из книги Язык как инстинкт автора Пинкер Стивен

Описание языка и его развития у детей с позиций Роджера Брауна Мы прибегаем к помощи языка, когда хотим рассказать, как наши давние предки стали людьми. Именно благодаря языку, как полагает Браун, каждое поколение может накапливать знания и передавать их следующим

Из книги Мозг, разум и поведение автора Блум Флойд Э

9. ОДНО ИЗ ОПИСАНИЙ ЯЗЫКА Чарлз Хоккет опубликовал свои соображения относительно ключевых свойств языка в книге «Курс современной лингвистики»; с тех пор он несколько пересмотрел составленный им список свойств. Однако Футс выбрал для анализа исходный перечень,

Из книги Мозг рассказывает [Что делает нас людьми] автора Рамачандран Вилейанур С.

Послесловие ШИМПАНЗЕ НА ДОРОГЕ К ХРАМУ ЯЗЫКА д-р филол. наук Б.В. ЯкушинГлавная мысль книги Юджина Линдена – между миром животных и человечеством нет непроходимой пропасти, животные имеют столько же прав на благополучное существование на Земле, сколько и человек. Для

Из книги Хозяева Земли автора Уилсон Эдвард

Формирование человеческого языка Человеческий язык, как это имело место и в отношении материальной культуры, прошел долгий путь развития, и звуки, сопровождающие первые трудовые действия, еще не могли быть подлинными словами, обозначающими отдельные объекты, их

Из книги Глаз и Солнце автора Вавилов Сергей Иванович

Глава 4 МЕХАНИЗМЫ РАБОТЫ ЯЗЫКА Грамматика за работой Журналисты говорят, что это не новость, когда собака кусает человека; вот когда человек кусает собаку - это что-то новенькое. И именно в этом заключена суть языкового инстинкта: язык сообщает о чем-то новом. Цепочки

Из книги автора

Глава 11 БОЛЬШОЙ ВЗРЫВ Эволюция языка Слоновий хобот имеет шесть футов в длину и один фут в толщину и содержит шестьдесят тысяч мускулов. С помощью хобота слоны могут с корнем выдирать деревья, складывать бревна в штабеля или аккуратно помещать их в требуемую позицию при

Из книги автора

Роль языка в происхождении сознания Согласно Джулиану Джейнсу (Janes, 1976), единство личности, о котором писал Газзанига, возникло в истории человеческого рода на удивление недавно. Джейнс полагает, что сознание появилось у человека всего лишь около трех тысяч лет назад,

Из книги автора

Из книги автора

Из книги автора

Джордж Беркли Теория зрения, или зрительного языка, показывающая непосредственное присутствие и провидение божества; защищенная и объясненная. В ответ анонимному автору <…> 6. То, что атеистические принципы пустили глубокие корни и распространяются дальше, чем

Несмотря на разнообразные трюки, которые умеют проделывать лабораторные мыши, ученые всё пытаются расширить арсенал фокусов своих подопечных. Сверхвыносливые, сверхсильные, сверхбыстрые, сверхустойчивые или, наоборот, сверхвосприимчивые к самым опасным заболеваниям - на этом список генетически приобретенных по воле учёных способностей не ограничивается.

Вольфганг Энард из лейпцигского Института эволюционной антропологии имени Макса Планка и его коллеги поставили перед собой практически неразрешимую задачу - научить мышей говорить.

Ну или хотя бы пересадить мышам человеческую версию гена речи Foxp2.

У мышей, да и других зверей, в том числе и приматов, этот ген, а точнее, последовательность ДНК, кодирующая транскрипционный фактор Foxp2, тоже есть, но отличается от человеческой двумя точечными мутациями. Считается, что именно эти мутации дали человеку уникальную способность как говорить, так и различать речь. В оценках возраста этой мутации ученые расходятся - от 100 до 500 тысяч лет. Вопрос возраста и эволюции Foxp2 стал даже чуть ли не главной темой в обсуждении расшифрованного недавно генома неандертальцев.

Однако эффекты этого транскрипционного фактора пока остаются непонятными. Очевидно, что такой сложный процесс, как речь, не может обеспечиваться всего лишь одним геном, необходимо соответствующее строение дыхательных путей и голосовых связок. Кроме того, головной мозг и орган слуха должны быть способны эту самую речь воспринимать и различать. Foxp2 как нельзя лучше подходит на роль «регулятора» - ведь это транскрипционный фактор, регулирующий работу самых разнообразных генов (каких - до конца неизвестно). То есть одной мутации в гене Foxp2 достаточно, чтобы изменить строение, свойства и функции одновременно в нескольких тканях - будь то нервная или дыхательная система.

Foxp2 стал «геном речи» относительно недавно: в конце прошлого века выяснилось, что именно его мутации - причина врожденных дефектов восприятия речи.

А вот механизм действия, равно как и все функции этого фактора, до сегодняшнего дня оставались неизвестными. Забегая вперед, скажем, что и после работы Энарда осталось много вопросов, хотя ученым и удалось описать эффекты человеческой версии Foxp2 на мышах. Авторы публикации в Cell, перечисление которых вместе с институтами заняло всю первую страницу статьи, попытались ответить сразу на два вопроса: какова роль Foxp2 в целом и в чем отличие эффектов человеческого Foxp2 от мышиного.

Для этого им пришлось сначала вывести мышей гетерозиготных по этому гену - Foxp2wt/ko (wild type/knockout), то есть один вариант этого гена был «диким» - мышиным, а второй - выключен совсем. В дополнение к этой группе ученые получили и мышей Foxp2hum/hum (human), у которых в обеих позициях стоял человеческий вариант гена. После чего Энард и коллеги, среди которых был и «главный специалист» по геному неандертальца Сванте Пеэбо, оценили мышей почти по трём сотням физиологических критериев.

«Очеловеченные» мыши так и не научились говорить и даже отличались меньшей секрецией дофамина и угасшим исследовательским энтузиазмом, зато издавали количественно отличающиеся ультразвуки.

Отсутствие же одной копии гена приводило к абсолютно противоположному эффекту, что лишний раз доказывает роль человеческой версии Foxp2 во всех наблюдаемых феноменах. Причина этих отличий - в базальных ядрах конечного мозга. Именно здесь происходит перенаправление сигналов от коры больших полушарий к мышцам, и здесь же «замыкаются» многие рефлексы. Снижение активности в поиске и изучении новых объектов объясняется низким уровнем дофамина - медиатора удовольствия, стимулирующего к подобному поведению.

Что же касается главной темы для обсуждения - влияния на речь, то здесь большая часть отличий оказалась незначимой, хотя авторы и смогли найти небольшую разницу:

«гуманизированные» мыши оказались склонны издавать больше отдельных звуков и использовали для этого меньшие пиковые частоты по сравнению с нокаутными по одному из генов.

Впрочем, это демонстрирует лишь роль конкретной человеческой версии, а не Foxp2 в целом.

Судя по всему, Foxp2 оказывает наибольшее воздействие на распознавание речи и звуков, а так же на центральную регуляцию речи. Самое интересное так и не научившиеся говорить при жизни мыши рассказали учёным уже после препарирования:

У «очеловеченных» мышей средняя длина коротких отростков нервных клеток - дендритов - оказалась на 22% больше.

Это способствует образованию большего количества контактов между клетками, а следовательно, и более эффективной работе нервной системы и, в частности, слухового анализатора.

Тем самым Энард в очередной раз подтвердил тот факт, что эволюция в рамках такой совершенной группы, как звери, шла в основном благодаря транскрипционным факторам, а не генам в привычном понимании этого слова. Осталось ещё поискать Foxp2 у попугаев, и вопрос о его роли будет окончательно разрешен.

Несмотря на разнообразные трюки, которые умеют проделывать лабораторные мыши, ученые всё пытаются расширить арсенал фокусов своих подопечных. Сверхвыносливые, сверхсильные, сверхбыстрые, сверхустойчивые или, наоборот, сверхвосприимчивые к самым опасным заболеваниям - на этом список генетически приобретенных по воле учёных способностей не ограничивается.

Вольфганг Энард из лейпцигского Института эволюционной антропологии имени Макса Планка и его коллеги поставили перед собой практически неразрешимую задачу — научить мышей говорить.

Ну или хотя бы пересадить мышам человеческую версию гена речи Foxp2.

У мышей, да и других зверей, в том числе и приматов, этот ген, а точнее, последовательность ДНК, кодирующая транскрипционный фактор Foxp2, тоже есть, но отличается от человеческой двумя точечными мутациями. Считается, что именно эти мутации дали человеку уникальную способность как говорить, так и различать речь. В оценках возраста этой мутации ученые расходятся - от 100 до 500 тысяч лет. Вопрос возраста и эволюции Foxp2 стал даже чуть ли не главной темой в обсуждении расшифрованного недавно генома неандертальцев .

Однако эффекты этого транскрипционного фактора пока остаются непонятными. Очевидно, что такой сложный процесс, как речь, не может обеспечиваться всего лишь одним геном, необходимо соответствующее строение дыхательных путей и голосовых связок. Кроме того, головной мозг и орган слуха должны быть способны эту самую речь воспринимать и различать. Foxp2 как нельзя лучше подходит на роль «регулятора» — ведь это транскрипционный фактор, регулирующий работу самых разнообразных генов (каких - до конца неизвестно). То есть одной мутации в гене Foxp2 достаточно, чтобы изменить строение, свойства и функции одновременно в нескольких тканях - будь то нервная или дыхательная система.

Foxp2 стал «геном речи» относительно недавно: в конце прошлого века выяснилось, что именно его мутации - причина врожденных дефектов восприятия речи.

А вот механизм действия, равно как и все функции этого фактора, до сегодняшнего дня оставались неизвестными. Забегая вперед, скажем, что и после работы Энарда осталось много вопросов, хотя ученым и удалось описать эффекты человеческой версии Foxp2 на мышах. Авторы публикации в Cell, перечисление которых вместе с институтами заняло всю первую страницу статьи, попытались ответить сразу на два вопроса: какова роль Foxp2 в целом и в чем отличие эффектов человеческого Foxp2 от мышиного.

Для этого им пришлось сначала вывести мышей гетерозиготных по этому гену — Foxp2 wt/ko (wild type/knockout), то есть один вариант этого гена был «диким» - мышиным, а второй — выключен совсем. В дополнение к этой группе ученые получили и мышей Foxp2 hum/hum (human), у которых в обеих позициях стоял человеческий вариант гена. После чего Энард и коллеги, среди которых был и «главный специалист» по геному неандертальца Сванте Пеэбо, оценили мышей почти по трём сотням физиологических критериев.

«Очеловеченные» мыши так и не научились говорить и даже отличались меньшей секрецией дофамина и угасшим исследовательским энтузиазмом, зато издавали количественно отличающиеся ультразвуки.

Отсутствие же одной копии гена приводило к абсолютно противоположному эффекту, что лишний раз доказывает роль человеческой версии Foxp2 во всех наблюдаемых феноменах. Причина этих отличий - в базальных ядрах конечного мозга. Именно здесь происходит перенаправление сигналов от коры больших полушарий к мышцам, и здесь же «замыкаются» многие рефлексы. Снижение активности в поиске и изучении новых объектов объясняется низким уровнем дофамина - медиатора удовольствия, стимулирующего к подобному поведению.

Что же касается главной темы для обсуждения - влияния на речь, то здесь большая часть отличий оказалась незначимой, хотя авторы и смогли найти небольшую разницу:

«гуманизированные» мыши оказались склонны издавать больше отдельных звуков и использовали для этого меньшие пиковые частоты по сравнению с нокаутными по одному из генов.

Впрочем, это демонстрирует лишь роль конкретной человеческой версии, а не Foxp2 в целом.

Судя по всему, Foxp2 оказывает наибольшее воздействие на распознавание речи и звуков, а так же на центральную регуляцию речи. Самое интересное так и не научившиеся говорить при жизни мыши рассказали учёным уже после препарирования:

у «очеловеченных» мышей средняя длина коротких отростков нервных клеток - дендритов — оказалась на 22% больше.

Это способствует образованию большего количества контактов между клетками, а следовательно, и более эффективной работе нервной системы и, в частности, слухового анализатора.

Тем самым Энард в очередной раз подтвердил тот факт, что эволюция в рамках такой совершенной группы, как звери, шла в основном благодаря транскрипционным факторам, а не генам в привычном понимании этого слова. Осталось ещё поискать Foxp2 у попугаев, и вопрос о его роли будет окончательно разрешен.