Диетические... Волосы Аксессуары

Электрон. Образование и строение электрона. Магнитный монополь электрона. Из чего состоит электрон? Масса и заряд электрона Чему равен электрон в физике

Имеет двойственную природу. Находясь в непрерывном движении в поле ядра атома, электрон одновременно проявляет свойства волны и частицы. Движение электрона подчиняется законам .
Связь между волновыми и корпускулярными свойствами электрона отражает соотношение де Бройля:
λ =h/mv ,

    где λ – длина волны электрона; m – его масса; v – скорость;
    h = 6.62 10 - 34 Дж с – постоянная Планка.
Энергию и координаты электрона, как и других элементарных частиц, невозможно одновременно измерить с одинаковой точностью ( Гейзенберга). Поэтому движение электрона в атоме или в молекуле нельзя описать с помощью траектории. Электрон может находиться в любой точке пространства, но с разной вероятностью .

Часть пространства, в котором велика вероятность нахождения электрона, называют или электронным облаком.


Электрон — элементарная частица, входящая в состав атома.
Заряд –1.6 · 10 –19 Кл (–1 элементарный заряд).
Масса 0,0005486 а.е.м. (1/1836 массы протона).
Спин 1/2.
Открыт Дж.Дж. Томпсоном в 1897 г.
Движение электрона подчиняется законам квантовой механики.

Электронная орбиталь

Электрон, находясь в непрерывном движении в поле ядра атома, одновременно проявляет свойства волны и частицы. Для описания его состояния в атоме или в молекуле используется волновая функция Ψ (x,y,z ), называемая орбиталью (x,y,z – пространственные координаты).
Квадрат модуля функции |Ψ| 2 определяет вероятность нахождения электрона в данном элементарном объеме . В квантовой механике орбиталь Ψ является решением волнового уравнения Шрёдингера:

Е Ψ = Ψ ,
где Е – энергия, – оператор Гамильтона.

Волновая функция Ψ является амплитудой стоячей волны, её знак может быть положительным или отрицательным. Квадрат модуля волновой функции, соответствующий плотности электронного облака в данном объеме, всегда положительный.
Часто используют упрощенный подход и орбиталью называют область пространства, в котором вероятность нахождения электрона максимальна (~ 95%).

Квантовая механика — физическая теория, устанавливающая законы движения микрочастиц (электронов, ядер и др.). Основные отличия квантовой механики от классической (описывающей движение макрочастиц) заключаются в следующем:

  1. Некоторые физические величины в квантовой механике имеют вероятностный характер. Например, положение (координаты) и скорость микрочастицы невозможно определить точно, а можно лишь рассчитать вероятность их различных значений.
  2. Изменение некоторых физических величин в квантовой механике происходит не непрерывно, а дискретно. Например, энергия микрочастицы может иметь лишь некоторые определенные значения.

Принцип неопределенности Гейзенберга

Экспериментальные исследования свойств микрочастиц (атомов, электронов, ядер, фотонов и др.) показали, что точность определения их динамических переменных (координат, кинетической энергии, импульсов и т.п.) ограничена и регулируется открытым в 1927 г. В. Гейзенбергом принципом неопределенности. Согласно этому принципу динамические переменные, характеризующие систему, могут быть разделены на две (взаимно дополнительные) группы:

    1) временные и пространственные координаты (t и q );
    2) импульсы и энергия (p и E ).
При этом невозможно определить одновременно переменные из разных групп с любой желаемой степенью точности (например, координаты и импульсы, время и энергию). Это связано не с ограниченной разрешающей способностью приборов и техники эксперимента, а отражает фундаментальный закон природы. Его математическая формулировка дается соотношениями:
    где Δq , Δp , ΔE , Δt - неопределенности (погрешности) измерения координаты, импульса, энергии и времени, соответственно; h - постоянная Планка.
Обычно достаточно точно указывают значение энергии микрочастицы, так как эта величина сравнительно легко определяется экспериментально.

Введение………………………………………………………………………

Основная часть………………………………………………………………

Определение электрона, его открытие …………..…...……………

Свойства электрона …………………………………………………

Строение электронных оболочек ……..…………………………..

Выводы ……………………………………………………………….

Заключение……………………………………………………………………

Список литературы…………………………………………………………..

Приложения

Приложение 1……………………………………………………………….

Вступление

Первое представление, что такое атом, электрон, электронные оболочки нам дали ещё в 8-ом классе. Это были азы, самое простое объяснение сложнейшего, как потом оказалось, материала. Для меня в 8 классе самых простых объяснений было достаточно. Но не так давно, месяца 2-3 назад, я начал задумываться, а как же на самом деле устроен атом, как движется электрон, что такое «электронная орбиталь» в полном её понимании. Сначала я пытался сам подумать над этим, но ничего «дельного», по моим представлениям, у меня не выходило. Тогда я начал изучать дополнительную литературу, чтобы получить полное представление о микромире и ответить на вопросы, которые меня интересуют. С каждой новой строкой из прочитанного для меня открывалось что-то новое. Далее я попытался изложить то, что смог изучить и частично (ибо знания такого высокого уровня даются в университетах и изучаются множеством учёных всего мира, и школьнику такой материал в полном смысле осознать очень сложно) понять за это время.

Основная часть

1. Определение электрона, его открытие.

Электрон – стабильная, отрицательно заряженная элементарная частица , одна из основных структурных единиц вещества.

Является фермионом (то есть имеет полуцелый спин ). Относится к лептонам (единственная стабильная частица среди заряженных лептонов). Из электронов состоят электронные оболочки атомов , где их число и положение определяет почти все химические свойства веществ. Движение свободных электронов обусловливает такие явления, как электрический ток в проводниках и вакууме .

Датой открытияэлектрона считается 1897 год, когда Томсоном был поставлен эксперимент по изучению катодных лучей. Первые снимки треков отдельных электронов были получены Чарльзом Вильсоном при помощи созданной им туманной камеры.

2. Свойства электрона.

А. Масса и заряд частицы.

Заряд электрона неделим и равен −1,(35)·10−19 Кл. Он был впервые непосредственно измерен в экспериментах А. Ф. Иоффе (1911) и Р. Милликена (1912). Эта величина служит единицей измерения электрического заряда других элементарных частиц (в отличие от заряда электрона, элементарный заряд обычно берётся с положительным знаком). Масса электрона равна 9,(40)·10−31 кг.

Б. Невозможность описания электрона через классические законы механики и электродинамики.

Долгое время знаний о действительном строении атома не было. В конце XIX – начале XX в. в. было доказано, что атом является сложной частицей, состоящей из более простых (элементарных) частиц. В 1911 г. на основании экспериментальных данных английский физик Э. Резерфорд предложил ядерную модель атома с почти полной концентрацией массы в относительно малом объеме. Ядро атома, состоящее из протонов и нейтронов, имеет положительный заряд. Оно окружено электронами, несущими отрицательный заряд.

Описать движение электронов в атоме с позиций классической механики и электродинамики невозможно, так как:

· если утверждать, что электрон (как цельное тело) движется по замкнутой круговой орбите вокруг ядра со Ѵ~ м/c (т. е. рассматривать с позиции классической механики), то под действием центростремительной силы он в кратчайшее время (~ сек) должен будет упасть на ядро атома, что приведёт к не существованию атома как такового и не существованию молекул, т. к. электроны осуществляют взаимодействие между атомами;

· если рассматривать электрон как заряженное тело (т. е. рассматривать с позиции электродинамики), то он неизбежно должен притянуться положительно заряженным ядром, а также при движении он будет излучать электромагнитное поле и терять при этом энергию, что неизбежно приведёт к аналогичной ситуации, что и в случае рассмотрения с позиции классической механики.

Вот что писал Нильс Бор:

«Недостаточность классической электродинамики для объяснения свойств атома на основе модели резерфордовского типа ясно проявляется при рассмотрении простейшей системы, состоящей из положительно заряженного ядра очень малого размера и электрона, движущегося по замкнутой орбите вокруг ядра. Ради простоты примем, что масса электрона пренебрежимо мала по сравнению с массой ядра, а скорость электронов мала по сравнению со скоростью света.

Сначала допустим, что излучение энергии отсутствует. В этом случае электрон будет двигаться по стационарным эллиптическим орбитам… Теперь рассмотрим влияние излучения энергии, как оно обычно измеряется по ускорению электрона. В этом случае электрон уже не будет двигаться по стационарным орбитам. Энергия W будет непрерывно убывать, и электрон будет приближаться к ядру, описывая всё меньшие орбиты со всё возрастающей частотой; в то время как электрон в среднем выигрывает в кинетической энергии, система в целом теряет энергию. Этот процесс будет продолжаться до тех пор, пока размеры орбит станут того же порядка, что и размеры электронов или ядра. Простой расчёт показывает, что испускаемая во время указанного процесса энергия неизмеримо больше той, которая испускается при обычных молекулярных процессах. Очевидно, что поведение такой системы совершенно отлично от того, что действительно происходит с атомной системой в природе. Во-первых, реальные атомы длительное время имеют определённые размеры и частоты. Далее представляется, что если рассмотреть какой-либо молекулярный процесс, то после излучения определённого количества энергии, характерного для излучаемой системы, эта система всегда вновь окажется в состоянии устойчивого равновесия, в котором расстояния между частицами будут того же порядка величины, что и до процесса».


В. Постулаты Бора.

Основные допущения, сформулированные Нильсом Бором в 1913 году для объяснения закономерности линейчатого спектра атома водорода и водородоподобных ионов, а также квантового характера испускания и поглощения света. Бор исходил из планетарной модели атома Резерфорда.

· Атом может находиться только в особенных стационарных, или квантовых, состояниях, каждому из которых отвечает определенная энергия. В стационарном состоянии атом не излучает электромагнитных волн.

· Электрон в атоме , не теряя энергии, двигается по определённым дискретным круговым орбитам для которых момент импульса квантуется . Пребывание электрона на орбите определяет энергию этих стационарных состояний.

· При переходе электрона с орбиты (энергетический уровень) на орбиту излучается или поглощается квант энергии h ν = En − Em , где En ; Em энергетические уровни , между которыми осуществляется переход. При переходе с верхнего уровня на нижний энергия излучается, при переходе с нижнего на верхний - поглощается.

a) «Динамическое равновесие системы в стационарных состояниях можно рассматривать с помощью обычной механики, тогда как переход системы из одного стационарного состояния в другое нельзя трактовать на этой основе.

b) Указанный переход сопровождается испусканием монохроматического излучения, для которого соотношение между частотой и количеством выделенной энергии именно такое, которое дает теория Планка…»

позволили Бору составить свою теорию строения атома или Боровскую модель атома.

Она представляет собой полуклассическую модель атома, за основу которой взята теория Резерфорда о строении атома. Используя выше изложенные допущения и законы классической механики, а именно равенство силы притяжения электрона со стороны ядра и центробежной силы, действующей на вращающийся электрон, Бор получил следующие значения для радиуса стационарной орбиты и энергии находящегося на этой орбите электрона:

https://pandia.ru/text/78/008/images/image006_77.gif" alt="m_e" width="24" height="12"> - масса электрона, Z - количество протонов в ядре, - диэлектрическая постоянная, e - заряд электрона.

Именно такое выражение для энергии можно получить, применяя уравнение Шрёдингера , решая задачу о движении электрона в центральном кулоновском поле.

Радиус первой орбиты в атоме водорода R0=5,(36)·10−11 м, ныне называется боровским радиусом , либо атомной единицей длины и широко используется в современной физике. Энергия первой орбиты эВ представляет собой энергию ионизации атома водорода.

Примечание: данная модель – это грубое применение законов электродинамики с некоторыми допущениями для объяснения движения электрона исключительно в атоме водорода. Для более сложных систем с большим количеством электронов данная теория неприемлема. Она является следствием более общих квантовых законов.

Г. Корпускулярно-волновой дуализм.

В классической механике рассматривается два вида движения: движение тела с локализацией перемещающегося объекта в каждой точке траектории в определенный момент времени и движение волны , делокализованной в пространстве среды. Для микрообъектов такое разграничение движения невозможно. Эту особенность движения называют корпускулярно-волновым дуализмом.

Корпускулярно-волновой дуализм – способность микрочастицы, обладающей массой, размерами и зарядом, одновременно проявлять и свойства, характерные для волн, например, способность к дифракции. В зависимости от того, какие свойства частиц изучаются, они проявляют либо одни, либо другие свойства.

Автором идеи корпускулярно-волнового дуализма стал А. Эйнштейн , который предложил рассматривать кванты электромагнитного излучения – фотоны – как движущиеся со скоростью света частицы, имеющие нулевую массу покоя. Их энергия равна E = mc 2 = h ν = hc / λ ,

где m - масса фотона, с - скорость света в вакууме, h - постоянная Планка, ν - частота излучения, λ - длина волны.

В 1924 году французский физик Луи де Бройль выдвинул идею о том, что волновой характер распространения, установленный для фотонов, имеет универсальный характер. Он должен проявляться для любых частиц, обладающих импульсом . Все частицы, имеющие конечный импульс , обладают волновыми свойствами, в частности, подвержены интерференции и дифракции .

Формула де Бройля устанавливает зависимость длины волны , связанной с движущейся частицей вещества, от импульса частицы:

где - масса частицы, - ее скорость, - постоянная Планка . Волны, о которых идет речь, называются волнами де Бройля. Формула де Бройля экспериментально подтверждается опытами по рассеянию электронов и других частиц на кристаллах и по прохождению частиц сквозь вещества. Признаком волнового процесса во всех таких опытах является дифракционная картина распределения электронов (или других частиц) в приемниках частиц.

Волны де Бройля имеют специфическую природу, не имеющую аналогии среди волн, изучаемых в классической физике: квадрат модуля амплитуды волны де Бройля в данной точке является мерой вероятности того, что частица обнаруживается в этой точке. Дифракционные картины, которые наблюдаются в опытах, являются проявлением статистической закономерности, согласно которой частицы попадают в определенные места в приёмниках – туда, где интенсивность волны де Бройля оказывается наибольшей. Частицы не обнаруживаются в тех местах, где, согласно статистической интерпретации, квадрат модуля амплитуды «волны вероятности» обращается в нуль.


Данная теория положила начало становления квантовой механики. В настоящий момент концепция корпускулярно-волнового дуализма представляет лишь исторический интерес, так как служила только интерпретацией, способом описать поведение квантовых объектов, подбирая ему аналогии из классической физики. На деле квантовые объекты не являются ни классическими волнами, ни классическими частицами, приобретая свойства первых или вторых лишь в некотором приближении.

Д. Принцип неопределённости Гейзенберга.

В 1927 г. немецкий физик-теоретик В. Гейзенберг сформулировал принцип неопределенности, заключающийся в принципиальной невозможности одновременно точно определить положение микрочастицы в пространстве и ее импульс:

Δpx · Δ x h / 2π,

где Δpx = m Δvx x - неопределенность (ошибка в определении) импульса микрообъекта по координате х ; Δx - неопределенность (ошибка в определении) положения микрообъекта по этой координате.

Таким образом, чем точнее определена скорость, тем меньше известно о местоположении частицы, и наоборот.

Поэтому для микрочастицы (в данном случае электрона) становится неприемлемым понятие о траектории движения, поскольку оно связано с конкретными координатами и импульсом частицы. Можно лишь говорить о вероятности обнаружить ее какой-то областях пространства.

Произошел переход от "орбит движения" электронов, введенных Бором, к понятию орбитали – области пространства, где вероятность пребывания электронов максимальна.

3. Строение электронных оболочек.

Электронная оболочка атома область пространства вероятного местонахождения электронов, характеризующихся одинаковым значением главного квантового числа n и, как следствие, располагающихся на близких энергетических уровнях. Число электронов в каждой электронной оболочке не превышает определенного максимального значения.

Электронная оболочка атома это совокупность атомных орбиталей с одинаковым значением главного квантового числа n.

a ) Понятие об атомной орбитали.

Атомная орбиталь это одноэлектронная волновая функция в сферически симметричном электрическом поле атомного ядра, задающаяся главным n , орбитальным l и магнитным m квантовыми числами.

1) Волновая функция - комплексная функция, описывающая состояние квантовомеханической системы. (Атом водорода принимается как простейшая квантовая система. Именно на его основе делаются все вычисления, связанные с волновой функцией.)

Самым важным является физический смысл волновой функции. Он состоит в следующем:

« плотность вероятности нахождения частицы в данной точке пространства в данный момент времени считается равной квадрату абсолютного значения волновой функции этого состояния в координатном представлении.»

Волновая функция системы А частиц содержит координаты всех частиц: ψ(1,2,...,A, t).

Квадрат модуля волновой функции отдельной частицы |ψ(,t)|2 = ψ*(,t)ψ(,t) дает вероятность обнаружить частицу в момент времени t в точке пространства, описываемой координатами , а именно, |ψ(,t)|2dv ≡ |ψ(x, y, z, t)|2dxdydz это вероятность найти частицу в области пространства объемом dv = dxdydz вокруг точки x, y, z. Аналогично, вероятность найти в момент времени t систему А частиц с координатами 1,2,...,A в элементе объема многомерного пространства дается величиной |ψ(1,2,...,A, t)|2dv1dv2...dvA.

Принцип неопределённости Гейзенберга накладывает некоторые рамки точности расчёта волновой функции.

Значение волновой функции находится путём решения так называемого уравнения Шрёдингера.

2) Уравнение Шрёдингера - уравнение, описывающее изменение в пространстве и во времени чистого (квантового) состояния , задаваемого волновой функцией.

Оно было предложено в 1926 г. немецким физиком Э. Шрёдингером для описания состояния электрона в атоме водорода.

3) Физический смысл волновой функции даёт понять геометрический смысл атомной орбитали, заключающийся в следующем:

«Атомная орбиталь является областью пространства, ограниченная поверхностью равной плотности вероятности или заряда . Плотность вероятности на граничной поверхности выбирают исходя из решаемой задачи, но, обычно, таким образом, чтобы вероятность нахождения электрона в ограниченной области лежала в диапазоне значений 0, 9 - 0,99»

4) Квантовые числа это числа, которые задают форму орбитали, энергию и момент импульса электрона.

· Главное квантовое число n может принимать любые целые положительные значения, начиная с единицы (n = 1,2,3, … ∞) и определяет общую энергию электрона на данной орбитали (энергетический уровень) :

Энергия для n = ∞ соответствует энергии одноэлектронной ионизации для данного энергетического уровня.

· Орбитальное квантовое число (называемое также азимутальным или дополнительным квантовым числом) определяет момент импульса электрона и может принимать целые значения от 0 до n - 1 (l = 0,1, …, n - 1). Момент импульса при этом задаётся соотношением


Атомные орбитали принято называть по буквенному обозначению их орбитального числа:

Буквенные обозначения атомных орбиталей произошли от описания спектральных линий в атомных спектрах: s (sharp ) - резкая серия в атомных спектрах, p (principal )- главная, d (diffuse ) - диффузная, f (fundamental ) - фундаментальная.

· Магнитное квантовое число ml

Движение электрона по замкнутой орбите вызывает появление магнитного поля. Состояние электрона, обусловленное орбитальным магнитным моментом электрона (в результате его движения по орбите), характеризуется третьим квантовым числом – магнитным ml. Это квантовое число характеризует ориентацию орбитали в пространстве, выражая проекцию орбитального момента импульса на направление магнитного поля.

Соответственно ориентации орбитали относительно направления вектора напряжённости внешнего магнитного поля, магнитное квантовое число может принимать значения любых целых чисел, как положительных, так и отрицательных, от – l до +l, включая 0, т. е. всего (2l + 1) значений. Например, при l = 0, ml = - 1, 0, +1.

Таким образом, ml характеризует величину проекции вектора орбитального момента количества движения на выделенное направление. Например, p-орбиталь в магнитном поле может ориентироваться в пространстве в 3-х различных положениях. [ 9. 55]

5) Оболочки.

Электронные оболочки обозначаются буквами K, L, M, N, O, P, Q или цифрами от 1 до 7. Подуровни оболочек обозначаются буквами s, p, d, f, g, h, i или цифрами от 0 до 6. Электроны внешних оболочек обладают большей энергией, и, по сравнению с электронами внутренних оболочек, находятся дальше от ядра, что делает их более важными в анализе поведения атома в химических реакциях и в роли проводника, так как их связь с ядром слабее и легче разрывается.

6) Подуровни.

Каждая оболочка состоит из одного или нескольких подуровней, каждый из которых состоит из атомных орбиталей. К примеру, первая оболочка (K) состоит из одного подуровня «1s». Вторая оболочка (L) состоит из двух подуровней, 2s и 2p. Третья оболочка - из «3s», «3p» и «3d».

Для полного объяснения строения электронных оболочек необходимо выделить следующие 3 очень важных положения:

1) Принцип Паули.

Он был сформулирован швейцарским физиком В. Паули в 1925. Он заключается в следующем:

В атоме не может быть 2-х электронов, обладающих одинаковыми свойствами.

На самом деле, данный принцип более фундаментален. Он применим ко всем фермионам.

2) Принцип наименьшей энергии.

В атоме каждый электрон располагается так, чтобы его энергия была минимальна (что отвечает наибольшей связи его с ядром).

Т. к. энергия электрона в основном состоянии определяется главным квантовым числом n и побочным квантовым числом l, то сначала заполняются те подуровни, для которых сумма значений квантовых чисел n и l является наименьшей.

Исходя из этого впервые в 1961 году сформулировал общее положение, гласящее, что:

Электрон занимает в основном состоянии уровень не с минимальным значением n , а с наименьшем значением суммы n + l .

3) Правило Гунда.

При данном значении l (т. е. в пределах определённого подуровня) электроны располагаются таким образом, чтобы суммарный спин был максимальным.

Если, например, в трёх p-ячейках атома азота необходимо распределить три электрона, то они будут располагаться каждый в отдельной ячейке, т. е. размещаться на трёх разных p-орбиталях :

Выводы :

1) Движение и свойства электрона нельзя описать классическими законами механики и электродинамики. Электрон можно описать только в рамках квантовой физики.

2) Электрон не имеет чёткой орбиты вращения. Вокруг ядра существует электронное «облако», где электрон находится в любой точке пространства в любой момент времени.

3) Электрон обладает свойствами частицы и волны.

4) Существуют разные физико-математические методы описания характеристик электрона.

5) Атомные орбитали, каждая из которых состоит не более, чем из 2-х электронов, составляют электронную оболочку атома, электроны которой участвуют в образовании межатомных связей в молекулах.

Заключение.

В школе на начальном этапе не полностью раскрывают реальное представление о строении атома, электрона. Чтобы лучше узнать его строение, необходимо изучать дополнительную литературу. И у кого эта тема вызывает интерес, у того есть все возможности, чтобы углубить свои знания, и даже внести свой вклад в познание микрочастиц.

Первоначальных знаний о законах физики недостаточно для того, чтобы в полной мере описать объекты микромира, в данном случае – электроны.

Без понимания основ мироздания, фундаментальных понятий микромира, невозможно понять окружающий нас макро – и мегамир.

Список литературы

1. Википедия. Статья «Атомная орбиталь».

2. Википедия. «Волновая функция».

3. Википедия. Статья «Открытие электрона».

4. Википедия. Статья «Постулаты Бора».

5. Википедия. «Уравнение Шрёдингера».

6. Википедия. Статья «Электрон».

7. , . Хрестоматия по физике: учебное пособие для учащихся» стр.168: Из статьи Н. Бора «О строении атома и молекул». Часть первая. «Связывание электронов положительным ядром».

8. Кафедра МИТХТ. Основы строения вещества.

9. , . Начала химии.

Приложение 1

1. Сэр Джозеф Джон Томсон (18 декабря 1856 - 30 августа 1940) - английский физик, открывший электрон, лауреат Нобелевской премии по физике 1906 года. Большинство работ его посвящено явлениям электрическим, в последнее же время особенно прохождению электричества через газы исследованию лучей Рентгена и Беккереля.

2. Чарлз Томсон Риз Вильсон (14 февраля 1869, Гленкорс - 15 ноября 1959, Карлопс, пригород Эдинбурга) - шотландский физик, за разработку названной в его честь камеры Вильсона, которая дала «метод визуального обнаружения траекторий электрически заряженных частиц с помощью конденсации пара», Вильсон был удостоен в 1927 г. (совместно с Артуром Комптоном) Нобелевской премии по физике.

3. Эрне́ст Ре́зерфорд (30 августа 1871, Спринг Грув - 19 октября 1937, Кембридж) - британский физик новозеландского происхождения. Известен как «отец» ядерной физики, создал планетарную модель атома. Лауреат Нобелевской премии по химии 1908 года.

4. Нильс Хе́нрик Дави́д Бор (7 октября 1885, Копенгаген - 18 ноября 1962, Копенгаген) - датский физик-теоретик и общественный деятель, один из создателей современной физики. Лауреат Нобелевской премии по физике (1922). Был членом более чем 20 академий наук мира, в том числе иностранным почётным членом АН СССР (1929; членом-корреспондентом - с 1924).

Бор известен как создатель первой квантовой теории атома и активный участник разработки основ квантовой механики. Также он внёс значительный вклад в развитие теории атомного ядра и ядерных реакций, процессов взаимодействия элементарных частиц со средой.

5. Альбе́рт Эйнште́йн 14 марта 1879, Ульм, Вюртемберг, Германия - 18 апреля 1955, Принстон, Нью-Джерси, США) - физик–теоретик, один из основателей современной теоретической физики, лауреат Нобелевской премии по физике 1921 года, общественный деятель-гуманист. Жил в Германии (1879-1893, 1914-1933), Швейцарии (1893-1914) и США (1933-1955). Почётный доктор около 20 ведущих университетов мира, член многих Академий наук, в том числе иностранный почётный член АН СССР (1926). Автор множества книг и статей. Автор важнейших физических теорий: Общая теория относительности, Квантовая теория фотоэффекта и т. д.

6. Раймон, 7-й герцог Брольи , более известный как Луи де Бройль (15 августа 1892, Дьеп - 19 марта 1987, Лувесьен) - французский физик-теоретик, один из основоположников квантовой механики, лауреат Нобелевской премии по физике за 1929 год, член Французской академии наук (с 1933 года) и её непременный секретарь (с 1942 года), член Французской академии (с 1944 года).

Луи де Бройль является автором работ по фундаментальным проблемам квантовой теории. Ему принадлежит гипотеза о волновых свойствах материальных частиц (волны де Бройля или волны материи), положившая начало развитию волновой механики. Он предложил оригинальную интерпретацию квантовой механики, развивал релятивистскую теорию частиц с произвольным спином, в частности фотонов (нейтринная теория света), занимался вопросами радиофизики, классической и квантовой теориями поля, термодинамики и других разделов физики.

7. Ве́рнер Карл Ге́йзенберг (нем. 5 декабря 1901, Вюрцбург - 1 февраля 1976, Мюнхен) - немецкий физик-теоретик, один из создателей квантовой механики. Лауреат Нобелевской премии по физике (1932). Член ряда академий и научных обществ мира.

8. Эрвин Ру́дольф Йо́зеф Алекса́ндр Шрё́дингер (12 августа 1887, Вена - 4 января 1961, там же) - австрийский физик-теоретик, один из создателей квантовой механики. Лауреат Нобелевской премии по физике (1933). Член ряда академий наук мира, в том числе иностранный член Академии наук СССР (1934).

Шрёдингеру принадлежит ряд фундаментальных результатов в области квантовой теории, которые легли в основу волновой механики: он сформулировал волновые уравнения (стационарное и зависящее от времени уравнения Шрёдингера), разработал волновомеханическую теорию возмущений, получил решения ряда конкретных задач. Шрёдингер предложил оригинальную трактовку физического смысла волновой функции. Он является автором множества работ в различных областях физики: статистической механике и термодинамике, физике диэлектриков, теории цвета, электродинамике, общей теории относительности и космологии; он предпринял несколько попыток построения единой теории поля.

Фермио́н - по современным научным представлениям: элементарные частицы, из которых складывается вещество. К фермионам относят кварки, электрон, мюон, тау-лептон, нейтрино. В физике - частица (или квазичастица) с полуцелым значением спина. Своё название получили в честь физика Энрико Ферми.

Лептоны - фермионами, то есть их спин равен 1/2. Лептоны вместе с кварками составляют класс фундаментальных фермионов - частиц, из которых состоит вещество и у которых, насколько это известно, отсутствует внутренняя структура.

Линейчатый спектр водорода (или Спектральные серии водорода) – набор спектральных линий, которые получаются при переходе электронов с любого из вышележащих стационарных уровней на один нижележащий, являющийся основным для данной серии.

Момент импульса − величина, зависящая от того, сколько массы данного тела вращается, как она распределена относительно оси вращения, и с какой скоростью происходит вращение.

Стационарным состоянием называется состояние квантовой системы, при котором её энергия и другие динамические величины, характеризующие квантовое состояние, не изменяются.

Квантовое состояние - любое возможное состояние, в котором может находиться квантовая система.

В волновой механике описывается волновой функцией.

В. Н. Гуськов.

Свойства характеризуют содержание физического объекта (ФО) в его взаимодействиях с окружающим миром.
Из этого следует, что сами по себе свойства нельзя рассматривать непосредственно как материальное содержания объекта. Свойства реальны только потому, что реально содержание ФО. Они полностью зависимы от содержания объектов и проявляются в их взаимодействиях с внешним миром. Поэтому всевозможные физические константы конкретных свойств ФО являются по существу показателями неизменности материального содержания объекта.

Масса электрона.

Масса согласно Ньютону – это внутренняя характеристика ФО, мера его инертности (инерции).
В физике считается, что инертность объекта проявляется в его способности противостоять изменениям, внешним воздействиям. Однако с позиций концепции непосредственного близкодействия (КНБ) способностью противостоять изменениям обладают все ФО участвующие в преобразующих взаимодействиях независимо от наличия у них свойства массы.
Любой ФО будет противостоять изменениям собственного содержания, своего внутреннего движения. Это свойственно и энергетическим объектам – фотонам, которые массой не обладают (по крайней мере, в виде скалярной величины).
С позиций КНБ наличие у ФО массы определяется его способностью не противостоять изменениям вообще или сохранять свою структуру, свою внутреннюю организацию, а противостоять изменению своей связи с конкретной материальной субстанцией в которой эта структура и реализуется как ФО.
Эта способность иметь массу противоположна способности энергетических ФО сохранять свою индивидуальность только через непрерывную смену материального субстрата с которым связана его структура и содержание.
Именно объединение этих противоположных способностей в одном целом (в системе) приводит ФО обладающий массой в пространственное перемещение, а ФО обладающий энергией к торможению, замедлению его перемещения в материальном пространстве. Такой комбинированный ФО (ЭЗСМ) состоящий из ЭСМ и ЗСМ никогда и ни при каких условиях не может пространственно покоиться или перемещаться в нем со скоростью света.

Естественно что как способность иметь массу так и способность иметь энергию строго связана со структурной организацией ФО.
Как только структура ФО имеющих массу, например электрона и позитрона, при аннигиляции разрушается, то вновь образованные структуры теряют способность иметь массу. Они становятся структурно иными объектами – фотонами. Которые теряя связь с конкретной материальной субстанцией в своем существовании приобретают энергетические характеристики.
Казалось бы, из этого можно сделать вывод, что все изменения, не приводящие к необратимым последствиям для объекта, имеющего массу и в частности для электрона, имеют второстепенное значение. Однако это не так.
Любые преобразующие взаимодействия с внешним миром приводят к трансформации зарядового движения в структуре электрона. (Собственно говоря, ничего другого в содержании электрона кроме этого движения и нет.).
Но структура электрона, несмотря на свою простоту такова, что, преобразования структурообразующих движений всегда обратимы. В результате этого сохраняется и общее количество зарядового движения в электроне.
А это обеспечивает не только сохранность его структуры, но и постоянство его свойств, в том числе и массы.
С другой стороны постоянство содержания позволяет электрону даже в случае вхождения его в состав более сложного образования сохранять (отчасти) свою индивидуальность и всегда становиться прежним ФО после выхода из системы.

Способностью иметь массу обладают исключительно ЗСМ (в том числе и электрон), а также все более сложные ФО, в состав которых они входят. Материя, находящаяся в основном состоянии или в энергетическом состоянии таким свойством не обладает.

Однако постоянство массы не обеспечивает электрону способность проявлять это свойство в полной мере в любой момент свого существования.
Из предыдущей статьи видно, что содержание электрона от фазы к фазе меняет направленность проявления своего содержания (свой внутренний импульс). А поскольку структурообразующие взаимодействия, происходящие в электроне протекают со скоростью света, то и электрон, находящийся в фазе «сходящихся» полуквантов будет представлять собой своего рода «уходящий » объект.
Это значит, что любые попытки вступить с ним в преобразующее взаимодействие в этот момент ни к чему не приведут. Он будет недоступен для взаимодействия, поскольку будет уходить от любых противостояний с внешним миром. (Точно также недоступен, но только всегда(!), фотон для положительно ускоряющих его взаимодействий в плоскости распространения.)
Несовместимость электрона с чем-либо внешним, а, следовательно, и преобразование, в этой фазе существования невозможна. Спрашивается – может ли электрон в таком состоянии проявить свое свойство массы в отношениях с окружающим миром? Очевидно, нет.
И это при наличии у электрона полноценного содержания, которое количественно ничем не отличается от его содержания в фазе «расходящихся» полуквантов.

Электрический заряд электрона.

Внешнее проявление электрического заряда электрона отличается большим разнообразием, чем проявление его свойства массы. И действительно в одних взаимодействиях с тождественными по знаку заряда объектами электрон «отталкивается» от них, а в других с объектами, имеющими противоположный знак заряда он напротив «притягивается».
Эта неоднозначность внешнего проявления заряда электрона позволяет утверждать, что результат всегда зависит от содержания и свойств обоих взаимодействующих объектов.

Однако сама по себе констатация наглядных фактов «притяжения» или «отталкивания» объектов в зависимости от их знаковой принадлежности позволяет определить только внешние признаки внутренних закономерностей процесса и вывести соответствующие им математические закономерности (закон Кулона, например). Но для того чтобы понять, почему проявление зарядового свойства электрона столь различно, и каковы принципы его реализации этого будет явно недостаточно.

Чтобы понять суть происходящего во взаимодействиях объектов имеющих электрические заряды мы вынуждены несколько отступить от темы разговора. Структура электрона, как и структура любого другого ФО существует в «среде» ОСМ. Поэтому очень важно знать, как устроен элемент ОСМ.
В предыдущей статье уже отмечалось, что разнознаковые полукванты входящие в состав элемента ОСМ должны компенсировать проявление друг друга, чтобы объект приобрел истинную (в том числе и электрическую) нейтральность. Это значит что «уравновешивают» друг друга в своем противостоянии не только встречно направленные полукванты одного вида, но и однонаправленные полукванты разных видов. Это значит, что связь между полуквантами в элементе ОСМ разнообразна и многогранна.
По существу разделять полукванты в элементе ОСМ по знаковому признаку как мы это делали (значительно упрощая действительность) при анализе структуры электрона здесь не получится. Реальная связь между полуквантами в ОСМ такова, что они буквально не могут существовать друг без друга. Они представляют собой одно целое, стороны одной действительности. При этом ни одно из таких совокупных взаимодействий, в которых участвуют полукванты ОСМ нельзя однозначно рассматривать как, безусловно, внутреннее или внешнее. (Что вполне допустимо в случае со структурой электрона.). Они абсолютно идентичны. Поэтому определение их статуса абсолютно субъективно т. к. решающую роль будет иметь позиция наблюдателя (субъекта).
Любое взаимодействие можно рассматривать как центральное и структурообразующее и вместе с тем как внешнее с другими элементами ОСМ.
Поэтому есть все основания считать структуру ОСМ непрерывной, состоящей из своего рода «узелков» в качестве которых выступают взаимодействия. Эти взаимодействия материи находящейся в основном состоянии однотипны по принципам внутренней организации, материальному содержанию и поэтому не имеют отличительных признаков.

Конечно, все вышеизложенное о предполагаемой структуре ОСМ может быть интересно для читателя. Но для нас сейчас важно только одна деталь — зависимость интенсивности проявления одного вида полуквантов ОСМ от наличия нейтрализующих это проявление однонаправленных с ними полуквантов другого вида. Что все это значит? Только одно – если разнознаковые однонаправленные полукванты равны, то они полностью нейтрализуют друг друга. Если же один вид полуквантов начинает доминировать, то образуется зарядовое движение что мы и наблюдаем в электроне.

«Отталкивание» электронов.

Фактор доминирования одного вида полуквантов над другим очень важен для объяснения принципа организации внутреннего движения в электроне.
Не менее важен он и для объяснения механизма взаимодействия между ЗСМ. Например, между двумя электронами. Зная организацию внутреннего движения в электроне не трудно понять, что произойдет с ним, когда на смену его нейтрального взаимодействия с ОСМ придет взаимодействие с тождественным по знаку ЗСМ.
Их несовместимость приведет к точно такому же преобразовательному взаимодействию, что было у них до этого с ОСМ. И результат его будет таким же – преобразование импульса взаимодействующих полуквантов.
Единственное отличие будет состоять в том, что это взаимодействие будет «преждевременным» и произойдет оно на меньшем удалении от месторасположения предшествующих центральных взаимодействий в ЗСМ.
Следовательно, в зоне контакта электронов трансформация зарядового движения наступит раньше, чем с противоположной стороны (в зоне их взаимодействий с ОСМ). В результате произойдет смещение последующего центрального преобразовательного взаимодействия в каждом из электронов.
Не трудно догадаться – в каком именно направлении произойдет это смещение – в направлении друг от друга. Также не сложно понять, что данное смещение центров электронов равнозначно перемещению их друг от друга в пространстве.
Таков механизм «отталкивания» тождественных ЗСМ , в данном случае двух электронов. Как видим, он прост и не требует привнесения в содержание ЗС для его реализации никаких дополнительных сущностей.
Конечно, здесь дана упрощенная трактовка процесса «отталкивания» без учета энергетической составляющей. Но что самое главное — без учета взаимодействия с ОСМ.

«Притяжение» электрона и позитрона.

Посмотрим теперь, нуждаются ли электрически разнознаковые ЗСМ (электрон и позитрон) в каких-либо связующих «веревочках» для реализации «притяжения» или передачи энергетических импульсов.
Как уже отмечалось однонаправленные разнознаковые полукванты в ОСМ практически полностью нейтрализуют друг друга. Связь между полуквантами сохраняется и при переходе ОСМ в зарядовое состояние.
Только в результате нарушения количественного равновесия между полуквантами исчезает и нейтральность присущая им в ОСМ. Один вид полуквантов становится доминирующим, а что происходит с другим? Очевидно, его нейтрализация еще больше усиливается .
Естественно эти изменения не могут не проявиться во взаимодействии разнознаковых ЗСМ. И если во взаимодействии тождественных ЗСМ преобразование преобладающего вида полуквантов наступает раньше чем при аналогичном взаимодействии этих ЗС с ОСМ, то при взаимодействии разнознаковых ЗС будет наблюдаться обратный эффект .
Преобразующее взаимодействие в зоне их контакта будет запаздывать относительно аналогичного взаимодействия с ОСМ. Соответственно произойдет смещение последующих центральных взаимодействий в каждом из ЗСМ в направлении друг к другу. А это значит, что объекты должны пространственно переместиться в направлении друг к другу.
Перемещение объектов действительно произойдет, но только не друг к другу, а друг В друга! Данное уточнение основано на положении КНБ о неизбежности непосредственного контакта при возникновении взаимодействия между ФО.
Следовательно, если уже взаимодействующие объекты перемещаются встречно, то это может означать только одно – их пространственное совмещение , а не формальное сближение.
Неверным было бы считать, что вследствие совмещения разнознаковых объектов может произойти какое-то «удвоение» действительности. Ничего подобного — совмещаемые объекты прекрасно дополняют друг друга, но материальная основа их существования (ОСМ) будет оставаться прежней. Пространственно совместимы структуры ЗСМ, но не материя . И чем глубже будет их взаимопроникновение, тем меньше будет противостояние структур (до момента возможной их аннигиляции).
Таким образом, мы видим, что для реализации «притяжения» нет никакой необходимости в связующих нитях, посредством которых объекты могли бы притянуть друг друга. Нет необходимости и в противоестественной (обратной по преобразовательной сути «отталкиванию») и, следовательно, алогичной передаче энергетического движения посредством виртуальных фотонов. В основе процесса «притяжения» лежит тот же самый механизм преобразовательного взаимодействия (а точнее совокупности взаимодействий) что и в основе «отталкивания».

Однако объяснение механизмов как «отталкивания» так и «притяжения» будет будет неполным без учета взаимодействий объектов не только между собой, но и с ОСМ в противоположных направлениях. Эти взаимодействия присутствуют всегда, но только при наличии зарядовых взаимодействий начинает проявляться их роль как движущих факторов.
Так при «отталкивании» величина противостояния в этих взаимодействиях оказывается меньше чем величина противостояния электронов, а при «притяжении» эта же величина будет больше противостояния электрона и позитрона. В результате ФО начинают смещаться по линии наименьшего сопротивления в первом случае друг от друга, во втором — друг в друга.
Результат относительного ослабления противостояния разнознаковых ФО в их взаимодействии наглядно можно представить как процесс «проваливания» их друг в друга или «вдавливания» друг в друга внешним взаимодействием с окружающим ОСМ. Но эти наглядные образы не совсем верно отражают суть происходящего. В них не находит отражение многоплановость причин происходящего. Ведь фактически «притяжение» объектов (как впрочем, и «отталкивание») это результат не одного и даже не двух конкретных взаимодействий, а комплекса всесторонних взаимодействий ФО с окружающей их материей.

Предварительные итоги.

Благодаря практически полной взаимной и всесторонней компенсации полуквантов среда ОСМ электрически нейтральна. Однако достаточно через преобразование усилить или ослабить одну из содержательных составляющих (один вид полуквантов) ОСМ как равновесие нарушается, и оно переходит в ЗСМ.
Естественно это выражается не только в усилении проявления преобладающего вида полуквантов, но и ослаблении однонаправленного с ним противоположного вида полуквантов.
В электрическом заряде электрона находит выражение его способность вступать во внешние преобразующие взаимодействия с разной степенью активности.
Проявление этого свойства непосредственно связано со свойствами другого взаимодействующего с ним ФО. При этом содержание взаимодействующих сторон может проявлять себя по разному. Поэтому зарядовое свойство можно определить как взаимное изменение интенсивности проявления отдельных сторон содержания ФО при их взаимодействии.
Ничего таинственного в реализации «отталкивания» и «притяжения» электрически заряженных элементарных ФО нет.
В природе на элементарном уровне сами эти явления как таковые отсутствуют — это только внешнее проявление глубинных процессов. В основе которых лежит преобразующее взаимодействие несовместимых сторон. Поэтому принципиально механизм реализации «отталкивания и «притяжения» ничем не отличим. Единственное различие заключается в степени противостояния объектов, в величине их несовместимости.

«Спин» электрона.

Если исходить из положения о тождественности всех электронов то, рассуждая строго логично, следует признать что никакого свойства, которое позволяло бы разделить все электроны на два типа не может быть.
И действительно, поскольку свойства характеризуют содержание объекта, то отличие в чем-то свойств электронов будет свидетельствовать об их содержательном различии. Это противоречит положению о полной тождественности всех электронов.
С позиций КНБ структура электрона абсолютно прозрачна и обнаружить в ней «нечто» что могло бы послужить основанием для предположения о структурном или содержательном различии электронов (по крайней мере, на данном уровне развития наших представлений о нем) не удастся.
Поэтому есть все основания утверждать об отсутствии у электронов свойств, которые позволяли бы разделить их на отдельные группы. Следовательно, и «спин» как свойство у всех электронов должен быть одинаковый.
С другой стороны тождественность структур всех электронов не мешает им вступать во взаимодействие между собой находясь в разных фазах своего внутреннего существования. Именно наличие внутренней «пульсации» содержания ЗС позволяет разрешить, казалось бы, неразрешимую дилемму с различными «спинами» у электронов.
Наличие двух фаз во внутренних преобразовательных процессах ЗС вносит разнообразие в их отношения. Обобщая возможные варианты развития событий при взаимодействии ЗС, выделим две противоположные ситуации.
Первая – фазы существования взаимодействующих ЗС совпадают.
Вторая – структурообразующие движения во взаимодействующих ЗС находятся в противофазе.
Оба варианта взаимодействий приведут к одному и тому же результату – «отталкиванию», но в деталях они будут отличаться. Наименее противоречивым (до определенного момента) будет отношение между ЗС, чьи внутренние зарядовые движения находятся в противофазе. Поэтому сближение таких объектов будет максимально возможным.
При совпадении фаз существования взаимодействующих электронов их противостояние будет наоборот максимальным. Поэтому при прочих равных условиях их сближение в сравнении с первой ситуацией будет минимальным.
Очевидно, это различие в результатах взаимодействий между электронами и позволяет утверждать о наличии у них разных спинов.
Вывод — «спин» является сравнительной характеристикой взаимодействующих объектов. Спин отдельного электрона теряет свою определенность.
Сказать заранее до взаимодействия какой конкретно у электрона «спин» нельзя. Можно считать, что его просто нет.
Непонимание фактора зависимости, подчиненности свойств материальному содержанию объекта может привести к серьезным трудностям в формировании представлений о ФО. Наличие у ФО каких-либо характеристик (массы, энергии, заряда), тем более, если они имеют константную величину, часто ассоциируется в сознании субъекта с самим материальным содержанием объекта. Якобы свойства присутствуют в нем.
Свойства воспринимаются как дополнительные сущности, которые имеются у объекта кроме его материального содержания или входящие в состав его материального содержания в качестве отдельных элементов.
Однако это не так, свойства могут проявляться с различной интенсивностью (в зависимости от характера взаимодействия), а порой и полностью исчезать с прекращением соответствующих взаимодействий. Содержание объекта при этом, по крайней мере, количественно может оставаться неизменным.
Вывод – «ареал обитания», область существования свойств это всегда процесс взаимодействия, вне его свойства не могут ничем и ни в чем себя проявить. Фактически свойства, которые мы считаем характеристикой отдельного объекта, являются показателем процесса взаимодействия, а подчас и целой совокупности взаимодействий.

Дуализм свойств электрона.

Прежде чем перейти непосредственно к «дуализму» свойств электрона рассмотрим некоторые стороны отношений электрона с фотоном.
В предыдущей статье уже отмечалось отсутствие энергетического движения в структуре электрона. Это дает основания для утверждения об отсутствии у электрона и способности обладать энергией. (Здесь энергия рассматривается как свойство присущее исключительно энергетическим объектам – фотонам).
Вообще понятие энергии в физике имеет двойной смысл.
С одной стороны оно отожествляется с энергетическим содержанием самого объекта. С другой, энергия рассматривается как свойство того же самого объекта.
Без сомнений подобное объединение ничем не может быть оправдано. Здесь надо определяться: либо энергия это содержание ФО, либо его свойство – третьего не дано.
С точки зрения автора энергия – это свойство энергетического объекта , а не его содержание. Поэтому излучать или поглощать непосредственно энергию ФО не может. Он может только проявлять свою энергичность.
Конечно, энергию, как и любое другое свойство можно потерять или приобрести, но только через преобразование материального содержания объекта, его количественное изменение.
Без физического процесса перемещение свойства «энергия» невозможно. Поэтому когда говорят об излучении или поглощении энергии обычно имеется в виду количественное изменение материального содержание объекта, которому присуще энергетическое движение.
По существу для организации внутреннего движения электрона в энергии нет никакой необходимости. А вот для проявления свойств электрона энергетическое движение и, следовательно, энергия необходимы.
Достичь этого не сложно – достаточно электрону объединиться с фотоном. Однако здесь есть одна тонкость – «приобретая» энергетическое движение электрон перестает быть самим собой и, следовательно, утрачивает свои изначальные свойства.
Несмотря на то, что в физике пространственно перемещающийся электрон рассматривается как электрон «обладающий» энергией на самом деле это не электрон, а новый ФО.
Электрон входит в состав этого объекта в качестве элемента. Поэтому фактически электрон, объединившись с фотоном, не только не приобретает новые свойства, но и теряет свойства присущие ему изначально. Это происходит всегда и со всеми ФО, которые посредством взаимодействия образуют новое целое – систему. Ни содержание элементов системы, ни их свойства не сохраняют автономность.
Это значит, что объединенные свойства не суммируются, а трансформируются в новые совокупные свойства присущие системе как целому. Таким образом, новый ФО приобретает не только энергию присущую фотону, но и массу, и заряд электрона. Образуется новый ФО, который условно можно назвать «фотоно-электроном» или энергозарядовым состоянием (ЭЗС). Этот ФО будет обладать соответствующими ему (и только ему!) объединенными свойствами, в том числе и «энергомассой».

Вывод – при образовании системы: электрон + фотон прежние свойства элементов системы не сохраняются. Поэтому выражение «движущийся электрон» также безграмотно, как и выражение «покоящийся фотон».
Таких объектов в природе не существует, если только мы не понимаем под ними систему (ЭЗС) с присущей этой системе свойством «энергомассой».

Анализируя структуру и свойства электрона, мы рассматривали электрон, так сказать в «чистом» виде. Электрон как ФО, который участвует во внешних взаимодействиях (без этого он не может существовать!), но не входит в состав более крупной физической организации, системы.
Данный подход вызван необходимостью рассмотреть не свойства какой-то системы, а свойства конкретного элементарного объекта – электрона. Понятно, что для возникновения взаимодействия электрона с любым объектом (кроме ОСМ) и, следовательно, для проявления свойств необходимо пространственное перемещение хотя бы одного из них. Это значит что наличие энергетического движения у взаимодействующих объектов обязательно. Однако, упрощая ситуацию, мы игнорируем этот факт, абстрагируемся от него.

Перейдем к рассмотрению непосредственно «дуализма» свойств электрона.
Анализ организации внутризарядового движения электрона показал, что в течение одного периода своего существования он испытывает удивительные метаморфозы. Казалось бы, соответственно должны изменяться и свойства электрона.
Однако, несмотря на своеобразную «двуликость» содержания электрона никакими исключающими друг друга свойствами он не обладает. Противопоставление электрона как «частицы» и как «волны» чисто условно. Хотя бы, потому что его содержание качественно и количественно в моменты проявление этих «свойств» остается неизменным, а сами изменения содержания электрона последовательны во времени.
Поэтому в дальнейшем будет говорить только об изменчивости свойств электрона в процессе его существования, а не об их двойственности.

Как уже отмечалось в предыдущей статье, электрон по своей природе не является волной — он природный гармонический осциллятор. Поэтому наблюдаемые в опытах по «дифракции» и «интерференции» электрона свойство «волны» проявляет на самом деле не электрон, а система: электрон + фотон. Только благодаря постоянной связи с фотоном электрон, в составе нового ФО, приобретает волновые свойства. Значит, если рассуждать строго, следует признать, что «корпускулярно — волновой дуализм» свойств как таковой не присущ электрону.
В дальнейшем речь пойдет о «фотоно-электроне » — системе состоящей из энергетического и зарядового состояний материи, т.е. о энергозарядовом состоянии материи (ЭЗСМ).

Конечно, при анализе опытов с ЭЗСМ подтверждающих их «волновой» характер нужно было бы учитывать все реальные обстоятельства происходящего. В частности то, что в процессе участвует не “однофазовая” абстрактная копия электрона, а объективно существующий “двухфазовый” электрон. Не мешало бы иметь реальные представления о структуре фотона, с которым электрон образует систему, а также иметь более четкие представления о строении мишени. Но, к сожалению, представить во всей полноте происходящее в экспериментах, на основе имеющихся знаний, не удастся. Поэтому ограничимся общими соображениями, основанными на элементарной логике.

Начнем с прохождения ЭЗСМ через две щели. Поскольку никакая мистика в науке неуместна, сразу признаем этот факт. Из этого конечно не следует, что ЭЗС в этот момент состоит из двух половинок. И электрон, и фотон в составе этой системы всегда сохраняют свою целостность.
Итак, в начальный момент прохождения ЭЗСМ в виде движущегося электрона через мишень, очевидно ФО, находится в фазе внешнего зарядообразующего взаимодействия.
Это, кстати, позволяет сделать определенные выводы о размерах ЭЗС в момент наибольшего «расширения» электрона. Они будут сопоставимы с расстоянием между отверстиями в мишени. В дальнейшем продвижении объекта через мишень их структуры должны находиться в состоянии противофаз. Это позволит ЭЗС с наименьшими изменениями достичь другого края мишени.

Результат, который будет наблюдаться на экране, полностью зависит от расстояния от мишени до экрана. Если ФО вступит во взаимодействие с экраном в состоянии совпадающих фаз, то будет наблюдаться пик проявления «энергомассовых» свойств движущегося электрона именно по центру экрана относительно расположения отверстий в мишени. Произойдет отражение ЭЗС от экрана.
Если они вступят в контакт в состоянии противофаз, то ФО проникнет вглубь экрана, и мы ничего не увидим.
При отклонении направления движения ФО от прямолинейного, расстояние до экрана будет меняться. Будет меняться и результат взаимодействий, т.к. ФО будет достигать экрана в разных фазах.
Таким образом, будет создаваться картина аналогичная наблюдаемой при интерференции волн. Однако пусть читатель сам поразмышляет — можно ли данный эффект от взаимодействий движущегося электрона с экраном рассматривать как интерференцию его самого с собой.
Иными словами, нужно выяснить — может ли интерферировать одиночная волна? Учитывая, что согласно положениям классической физики для получения данного эффекта необходимо наложение волн друг на друга.

Для объяснения «дифракции» движущегося электрона при прохождении его через одно отверстие к сказанному мало, что можно добавить.
Логично рассуждая, следует предположить, что в начальный момент прохождения мишени ФО должен находиться в состоянии “частицы”, либо просто в противофазе с состоянием мишени.
При выходе из мишени в случае отклонения движения от прямолинейного ФО совсем не нужно обладать способностью “огибать” препятствие. Ему достаточно быть в противофазе с содержанием мишени, чтобы пройти сквозь нее практически беспрепятственно. Конечно, структура и размеры препятствия должны быть соответствующими частоте колебаний в структуре ФО.

Итоги.

Масса и заряд электрона, наблюдаемые в течение времени значительно превышающего частоту его собственных колебаний выглядят как сохраняющиеся, постоянные величины. Но в течение одного периода колебательных движений в структуре ЗС интенсивность проявления свойств может меняться от максимума, практически до нуля.
Электрон в фазе «сходящихся» полуквантов практически не наблюдаем и не проявляет никаких свойств (за исключением пожалуй заряда).
Все известные физике свойства электрона можно отнести к фазе «расходящихся» полуквантов. В результате отдельная фаза периода существования электрона воспринимается субъектом как полноценный физический объект. Поэтому мы вынуждены при анализе свойств электрона его существование в фазе «расходящихся» полуквантов подразделять на две своего рода «подфазы». В одной из них (на начальной стадии расширения) электрон будет иметь практически «монолитное» строение, представляя собой «частицу». В другой (в максимальной стадии расширения) благодаря неопределенности размеров и «рассеиванию» содержания в пространстве ОСМ электрон предстанет в виде «волны».
Иными словами электрон в начальной стадии расширения предстает для внешнего наблюдателя в виде точечного излучателя движущейся материи , который продуцирует «расходящиеся» полукванты одного вида.
Из-за практической ненаблюдаемости внешнего преобразующего взаимодействия границы электрона в стадии максимального «расширения» становятся призрачными.
Различия между электроном и полем пространственной деформации ОСМ, а также и с собственно содержанием ОСМ стираются. В результате становится абсолютно неясным – откуда «однофазовый» электрон «черпает» зарядовое движение для реализации процесса «излучения» своего материального содержания.
Тем более необъяснимо появление энергии, которой у «покоящегося» электрона нет, (и не может быть в принципе) но, которую, согласно существующей физической теории, электрон должен безвозвратно излучать в окружающее пространство. (Здесь под «энергией» подразумевается энергетическое содержание фотона.)

В связи с таким односторонним восприятием структуры электрона возникает ряд проблем в современной теоретической физике.
В частности представления о природе электрона основанные на математических моделях, которые появляются вследствие обобщения всего лишь наглядного, внешнего проявления одной стороны содержания электрона алогичны по своей сути.
Они требуют отказаться от норм формальной логики, мыслить не просто оригинально, а «нетрадиционно».
Ни к чему кроме как к увеличению количества пациентов психиатрических клиник это привести не может. Поскольку представить ФО который одновременно является и волной и частицей никакой здравомыслящий субъект не в состоянии.

В самих математических моделях призванных описывать явления природы в соответствии с оригиналом появляются несоразмерности и бесконечности по целому ряду величин (в том числе и по массе, заряду, размерам и энергии). В борьбе с этими «расходимостями» применяются хитроумные способы (в частности теория перенормировок), призванные подогнать теорию под экспериментальные данные.
Это напоминает чем-то попытки школьника младших классов решить математическую задачу любым способом, после того как он узнал ответ в конце учебника.
Все эти «сложности» вполне объяснимы т.к. теоретическая физика вынуждена объяснять явления, которые в принципе не объяснимы с позиций современной теории.

Скорее всего, физическая действительность богаче и разнообразнее наших самых буйных фантазий и свойства материи даже на элементарном уровне (в особенности ОСМ) многогранны и неисчерпаемы.
Вероятно не только электрон во всей полноте своего структурного содержания, но и многое другое из реалий физического мира ускользает от нашего внимания. Но уже сейчас можно сказать, что ничего мистического или исключительно непознаваемого в явлениях микромира нет.

Электрон - фундаментальная частица, одна из тех, что являются структурными единицами вещества. По классификации является фермионом (частица с полуцелым спином, названа в честь физика Э. Ферми) и лептоном (частицы с полуцелым спином, не участвующие в сильном взаимодействии, одном из четырех основных в физике). Барионное равно нулю, как и других лептонов.

До недавнего времени считалось, что электрон - элементарная, то есть неделимая, не имеющая структуры частица, однако сейчас ученые другого мнения. Из чего состоит электрон по представлению современных физиков?

История названия

Еще в Древней Греции естествоиспытатели заметили, что янтарь, предварительно натертый шерстью, притягивает к себе мелкие предметы, то есть проявляет электромагнитные свойства. Свое название электрон получил от греческого ἤλεκτρον, что и означает "янтарь". Термин предложил Дж. Стоуни в 1894 году, хотя сама частица была открыта Дж. Томпсоном в 1897 году. Обнаружить ее было сложно, причиной этому служит малая масса, и заряд электрона стал в опыте по нахождению решающим. Первые снимки частицы получил Чарльз Вильсон с помощью специальной камеры, которая применяется даже в современных экспериментах и названа в его честь.

Интересен факт, что одной из предпосылок к открытию электрона является высказывание Бенджамина Франклина. В 1749 году он разработал гипотезу, согласно которой, электричество - это материальная субстанция. Именно в его работах были впервые применены такие термины, как положительный и отрицательный заряды, конденсатор, разряд, батарея и частица электричества. Удельный заряд электрона принято считать отрицательным, а протона - положительным.

Открытие электрона

В 1846 году понятие «атом электричества» стал использовать в своих работах немецкий физик Вильгельм Вебер. Майкл Фарадей открыл термин «ион», который сейчас, пожалуй, знают все еще со школьной скамьи. Вопросом природы электричества занимались многие именитые ученые, такие как немецкий физик и математик Юлиус Плюккер, Жан Перрен, английский физик Уильям Крукс, Эрнст Резерфорд и другие.

Таким образом, прежде чем Джозеф Томпсон успешно завершил свой знаменитый опыт и доказал существование частицы меньшей, чем атом, в этой сфере трудилось множество ученых, и открытие было бы невозможно, не проделай они этой колоссальной работы.

В 1906 году Джозеф Томпсон получил Нобелевскую премию. Опыт заключался в следующем: сквозь параллельные металлические пластины, создававшие электрическое поле, пропускались пучки катодных лучей. Затем они должны были проделать такой же путь, но уже через систему катушек, создававших магнитное поле. Томпсон обнаружил, что при действии электрического поля лучи отклонялись, и то же самое наблюдалось при магнитном воздействии, однако пучки катодных лучей не меняли траектории, если на них действовали оба этих поля в определенных соотношениях, которые зависели от скорости частиц.

После расчетов Томпсон узнал, что скорость этих частиц существенно ниже скорости света, а это значило, что они обладают массой. С этого момента физики стали считать, что открытые частицы материи входят в состав атома, что впоследствии и подтвердилось Он назвал ее «планетарная модель атома».

Парадоксы квантового мира

Вопрос о том, из чего состоит электрон, достаточно сложен, по крайней мере, на данном этапе развития науки. Прежде чем рассматривать его, нужно обратиться к одному из парадоксов квантовой физики, которые даже сами ученые не могут объяснить. Это знаменитый эксперимент с двумя щелями, объясняющий двойственную природу электрона.

Его суть в том, что перед «пушкой», стреляющей частицами, установлена рамка с вертикальным прямоугольным отверстием. Позади нее находится стена, на которой и будут наблюдаться следы от попаданий. Итак, для начала нужно разобраться, как ведет себя материя. Проще всего представить, как запускаются машиной теннисные мячики. Часть шариков попадает в отверстие, и следы от попаданий на стене складываются в одну вертикальную полосу. Если на некотором расстоянии добавить еще одно такое же отверстие, следы будут образовывать, соответственно, две полосы.

Волны же в такой ситуации ведут себя по-другому. Если на стене будут отображаться следы от столкновения с волной, то в случае с одним отверстием полоса тоже будет одна. Однако все меняется в случае с двумя щелями. Волна, проходя через отверстия, делится пополам. Если вершина одной из волн встречается с нижней частью другой, они гасят друг друга, и на стене появится интерференционная картина (несколько вертикальных полос). Места на пересечении волн оставят след, а места, где произошло взаимное гашение, нет.

Удивительное открытие

С помощью вышеописанного эксперимента ученые могут наглядно продемонстрировать миру различие между квантовой и классической физикой. Когда они стали обстреливать стену электронами, на ней проявлялся обычный вертикальный след: некоторые частицы, точно так же как теннисные мячики, попадали в щель, а некоторые нет. Но все изменилось, когда возникло второе отверстие. На стене проявилась Сначала физики решили, что электроны интерферируют между собой, и решили пускать их по одному. Однако уже спустя пару часов (скорость движущихся электронов все же гораздо ниже скорости света) снова стала проявляться интерференционная картина.

Неожиданный поворот

Электрон, вместе с некоторыми другими частицами, такими как фотоны, проявляет корпускулярно-волновой дуализм (также применяется термин "квантово-волновой дуализм"). Подобно одновременно и жив, и мертв, состояние электрона может быть как корпускулярным, так и волновым.

Однако следующий шаг в этом эксперименте породил еще больше загадок: фундаментальная частица, о которой, казалось, известно все, преподнесла невероятный сюрприз. Физики решили установить у отверстий наблюдательное устройство, чтобы зафиксировать, через какую именно щель проходят частицы, и каким образом они проявляют себя в качестве волны. Но как только было поставлен наблюдательный механизм, на стене появились только две полосы, соответствующие двум отверстиям, и никакой интерференционной картины! Как только «слежку» убирали, частица вновь начинала проявлять волновые свойства, будто знала, что за ней уже никто не наблюдает.

Еще одна теория

Физик Борн предположил, что частица не превращается в волну в прямом смысле слова. Электрон «содержит» в себе волну вероятности, именно она дает интерференционную картину. Эти частицы обладают свойством суперпозиции, то есть могут находиться в любом месте с определенной долей вероятности, поэтому их и может сопровождать подобная «волна».

Тем не менее результат налицо: сам факт наличия наблюдателя влияет на результат эксперимента. Кажется невероятным, но это не единственный пример подобного рода. Физики проводили опыты и на более крупных частях материи, однажды объектом стал тончайший отрез алюминиевой фольги. Ученые отметили, что один только факт некоторых измерений влиял на температуру предмета. Природу подобных явлений они объяснить пока еще не в силах.

Структура

Но из чего состоит электрон? На данный момент современная наука не может дать ответ на этот вопрос. До недавнего времени он считался неделимой фундаментальной частицей, сейчас же ученые склоняются к тому, что он состоит из еще более мелких структур.

Удельный заряд электрона также считался элементарным, но теперь открыты кварки, имеющие дробный заряд. Существует несколько теорий относительно того, из чего состоит электрон.

Сегодня можно увидеть статьи, в которых заявляется, что ученым удалось разделить электрон. Однако это верно лишь отчасти.

Новые эксперименты

Советские ученые еще в восьмидесятых годах прошлого века предположили, что электрон возможно будет разделить на три квазичастицы. В 1996 году удалось разделить его на спинон и холон, а недавно физиком Ван ден Бринком и его командой частица была разделена на спинон и орбитон. Однако расщепления удается добиться только в специальных условиях. Эксперимент может проводиться в условиях крайне низких температур.

Когда электроны «остывают» до абсолютного нуля, а это около -275 градусов по Цельсию, они практически останавливаются и образуют между собой нечто вроде материи, будто сливаясь в одну частицу. В таких условиях физикам и удается наблюдать квазичастицы, из которых «состоит» электрон.

Переносчики информации

Радиус электрона очень мал, он равен 2,81794 . 10 -13 см, однако выходит, что его составляющие имеют намного меньший размер. Каждая из трех частей, на которые удалось «разделить» электрон, несет в себе информацию о нем. Орбитон, как следует из названия, содержит данные об орбитальной волне частицы. Спинон отвечает за спин электрона, а холон сообщает нам о заряде. Таким образом, физики могут наблюдать отдельно различные состояния электронов в сильно охлажденном веществе. Им удалось проследить пары «холон-спинон» и «спинон-орбитон», но не всю тройку вместе.

Новые технологии

Физикам, открывшим электрон, пришлось ждать несколько десятков лет до тех пор, пока их открытие было применено на практике. В наше время технологии находят использование уже через несколько лет, достаточно вспомнить графен - удивительный материал, состоящий из атомов углерода в один слой. Чем будет полезно расщепление электрона? Ученые предрекают создание скорость которого, по их мнению, в несколько десятков раз больше, чем у самых мощных современных ЭВМ.

В чем тайна квантовой компьютерной технологии? Это можно назвать простой оптимизацией. В привычном компьютере минимальная, неделимая часть информации - это бит. И если мы считаем данные чем-то визуальным, то для машины варианта только два. Бит может содержать либо ноль, либо единицу, то есть части двоичного кода.

Новый метод

Теперь давайте представим, что в бите содержится и ноль, и единица - это «квантовый бит», или «кьюбит». Роль простых переменных будет играть спин электрона (он может вращаться либо по часовой стрелке, либо против). В отличие от простого бита, кьюбит может выполнять одновременно несколько функций, за счет этого и будет происходить увеличение скорости работы, малая масса и заряд электрона здесь не имеют значения.

Объяснить это можно на примере с лабиринтом. Чтобы выбраться из него, нужно перепробовать множество различных вариантов, из которых правильным будет только один. Традиционный компьютер пусть и решает задачи быстро, но все же в один момент времени может работать только над одной-единственной проблемой. Он переберет по одному все варианты путей, и в итоге обнаружит выход. Квантовый же компьютер, благодаря двойственности кьюбита, может решать множество задач одновременно. Он пересмотрит все возможные варианты не по очереди, а в единый момент времени, и тоже решит задачу. Трудность пока состоит только в том, чтобы заставить множество квантов работать над одной задачей - это и будет основой компьютера нового поколения.

Применение

Большинство людей пользуется компьютером на бытовом уровне. С этим пока отлично справляются и обычные ПК, однако чтобы прогнозировать события, зависящие от тысяч, а может и сотен тысяч переменных, машина должна быть просто огромна. же легко справится с такими вещами, как прогнозирование погоды на месяц, обработка данных по стихийным бедствиям и их предсказание, а также будет совершать сложнейшие математические вычисления со многими переменными за долю секунды, и все это с процессором величиной в несколько атомов. Так что возможно, уже очень скоро наши самые мощные компьютеры будут толщиной с лист бумаги.

Сохранение здоровья

Квантовые компьютерные технологии внесут огромный вклад в медицину. Человечество получит возможность создавать наномеханизмы с мощнейшим потенциалом, с их помощью можно будет не только диагностировать болезни, просто посмотрев на весь организм изнутри, но и оказывать медицинскую помощь без хирургического вмешательства: мельчайшие роботы с «мозгами» отличного компьютера смогут выполнять все операции.

Неизбежна революция и в сфере компьютерных игр. Мощные машины, способные мгновенно решать задачи, смогут воспроизводить игры с невероятно реалистичной графикой, не за горами уже и компьютерные миры с полным погружением.

Электрон. Образование и строение электрона. Магнитный монополь электрона.

(продолжение)


Часть 4. Строение электрона.

4.1. Электрон является двухкомпонентной частицей, которая состоит только из двух сверхуплотнённых (сгущенных, сконцентрированных) полей - электрического поля-минус и магнитного поля-N. При этом:

а) плотность электрона - максимально возможная в Природе;

б) размеры электрона (D = 10 -17 см и менее) - минимальные в Природе;

в) в соответствии с требованием минимизации энергии, все частицы - электроны, позитроны, частицы с дробным зарядом, протоны, нейтроны и пр. обязаны иметь (и имеют) сферическую форму;

г) по неизвестным пока причинам, независимо от величины энергии «родительского» фотона, абсолютно все электроны (и позитроны) рождаются абсолютно идентичными по своим параметрам (например - масса абсолютно всех электронов и позитронов составляет 0,511МэВ).

4.2. «Достоверно установлено, что магнитное поле электрона является таким же неотъемлемым свойством, как его масса и заряд. Магнитные поля у всех электронов одинаковы, как одинаковы их массы и заряды».(с) Это автоматически позволяет сделать однозначный вывод об эквивалентности массы и заряда электрона, то есть: масса электрона является эквивалентом заряда, и наоборот - заряд электрона является эквивалентом массы (для позитрона - аналогично).

4.3. Указанное свойство эквивалентности распространяется также и на частицы с дробными зарядами (+2/3) и (-1/3), которые являются основой кварков. То есть: масса позитрона, электрона и всех дробных частиц является эквивалентом их заряда, и наоборот - заряды этих частиц являются эквивалентом массы. Поэтому удельный заряд электрона, позитрона и всех дробных частиц одинаковый (const) и равен1,76*10 11 Кл/кг.

4.4. Поскольку элементарный квант энергии автоматически является элементарным квантом массы, то масса электрона (с учётом наличия дробных частиц 1/3 и 2/3) должна иметь значения, кратные массам трех отрицательных полуквантов. (См. также «Фотон. Строение фотона. Принцип перемещения. пункт 3.4.)

4.5. Определить внутреннее строение электрона весьма затруднительно по многим причинам, тем не менее, представляет значительный интерес хотя бы в первом приближении рассмотреть влияние двух компонент (электрической и магнитной) на внутреннее строение электрона. См. рис. 7.

Рис.7. Внутреннее строение электрона, варианты:

Вариант №1. Каждая пара лепестков отрицательного полукванта образует «микроэлектроны», которые затем формируют электрон. При этом количество «микроэлектронов» должно быть кратным трём.

Вариант №2. Электрон является двухкомпонентной частицей, которая состоит из двух состыкованных самостоятельных полусферических монополей - электрического(-) и магнитного(N).

Вариант №3. Электрон является двухкомпонентной частицей, которая состоит из двух монополей - электрического и магнитного. При этом магнитный монополь сферической формы расположен в центре электрона.

Вариант №4. Другие варианты.

По-видимому, может быть рассмотрен вариант когда электрические (-) и магнитные поля (N) могут существовать внутри электрона не только в виде компактных монополей, но и в виде однородной субстанции, то есть образуют практически бесструктурную? кристаллическую? гомогенную? частицу. Однако это весьма сомнительно.

4.6. Каждый из предложенных на рассмотрение вариантов имеет свои достоинства и недостатки, например:

а) Варианты №1. Электроны такой конструкции дают возможность спокойно образовывать дробные частицы с массой и зарядом кратным 1/3, но в то же время делают затруднительным объяснение собственного магнитного поля электрона.

б) Вариант №2. Этот электрон при движении вокруг ядра атома постоянно ориентирован на ядро своим электрическим монополем и поэтому может иметь только два варианта вращения вокруг своей оси - по часовой стрелке или против (запрет Паули?) и т.д.

4.7. При рассмотрении указанных (или вновь предложенных) вариантов в обязательном порядке необходимо учитывать реально существующие свойства и характеристики электрона, а также учитывать ряд обязательных требований, например:

Наличие электрического поля (заряда);

Наличие магнитного поля;

Эквивалентность некоторых параметров, например: масса электрона эквивалентна его заряду и наоборот;

Возможность образовывать дробные частицы массой и зарядом кратным 1/3;

Наличие набора квантовых чисел, спина и др.

4.8. Электрон появился как двухкомпонентная частица, у которой одна половина (1/2) является уплотнённым электрическим полем-минус (электрическим монополем-минус), а вторая половина (1/2) является уплотнённым магнитным полем (магнитным монополем-N). Однако при этом следует иметь в виду, что:

Электрические и магнитные поля при определённых условиях могут порождать друг друга (превращаться друг в друга);

Электрон не может быть однокомпонентной частицей и состоять на 100% из поля-минус, поскольку однозарядное поле-минус будет распадаться из-за сил отталкивания. Именно поэтому внутри электрона необходимо наличие магнитной компоненты.

4.9. К сожалению, провести полный анализ всех достоинств и недостатков предложенных вариантов и выбрать единственно правильный вариант внутреннего строения электрона в данной работе не представляется возможным.

Часть 5. «Волновые свойства электрона».

5.1. «К концу 1924г. точка зрения, согласно которой электромагнитное излучение ведет себя отчасти подобно волнам, а отчасти подобно частицам, стала общепринятой...И именно в это время француза Луи де Бройля, который в то время был аспирантом, осенила гениальная мысль: почему то же самое не может быть для вещества? Луи де Бройль проделал по отношению к частицам работу, обратную той, которую Эйнштейн провел для волн света. Эйнштейн связал электромагнитные волны с частицами света; де Бройль связал движение частиц с распространением волн, которые он назвал волнами материи. Гипотеза де Бройля основывалась на сходстве уравнений, описывающих поведение лучей света и частиц вещества, и носила исключительно теоретический характер. Для ее подтверждения или опровержения требовались экспериментальные факты».(с)

5.2. «В 1927 году американские физики К.Дэвиссон и К.Джермер обнаружили, что при «отражении» электронов от поверхности кристалла никеля при определённых углах отражения возникают максимумы. Аналогичные данные (возникновение максимумов) уже имелись по наблюдению дифракции рентгеновских волн лучей на кристаллических структурах. Поэтому появление этих максимумов у отражённых пучков электронов не могло быть объяснено никаким другим путём, кроме как на основе представлений о волнах и их дифракции.Таким образом, волновые свойства частиц — электронов (и гипотеза де Бройля) были доказаны экспериментом».(с)

5.3. Однако рассмотрение изложенного в данной работе процесса появления корпускулярных свойств у фотона (см. рис.5.) позволяет сделать вполне однозначные выводы:

а) по мере уменьшения длины волны с 10 -4 до 10 -10 {C}{C}{C}{C}{C}см электрические и магнитные поля фотона уплотняются

{C}{C}{C}{C}{C}{C}{C}{C}{C}{C}б) при уплотнении электрического и магнитного полей у «линии раздела» начинается стремительное увеличение «плотности» полей и уже в рентгеновском диапазоне плотность полей соизмерима с плотностью «обычной» частицы.

в) поэтому рентгеновский фотон при взаимодействии с препятствием уже не отражается от препятствия как волна, а начинает отскакивать от него как частица.

5.4. То есть:

а) уже в диапазоне мягкого рентгена электромагнитные поля фотонов настолько уплотнились, что обнаружить у них волновые свойства весьма затруднительно. Цитата: «Чем меньше длина волны фотона, тем труднее обнаружить у него свойства волны и тем сильнее у него проявляются свойства частицы».

б) в жестком рентгеновском и гамма-диапазоне фотоны ведут себя как стопроцентные частицы, и обнаружить у них волновые свойства уже практически невозможно. То есть: рентгеновский и гамма-фотон полностью теряет свойства волны и превращается в стопроцентную частицу. Цитата: «Энергия квантов в рентгеновском и гамма-диапазоне настолько велика, что излучение ведёт себя почти стопроцентно как поток частиц» (с).

в) поэтому в опытах по рассеиванию рентгеновского фотона от поверхности кристалла наблюдалась уже не волна, а обыкновенная частица, которая отскакивала от поверхности кристалла и повторяла строение кристаллической решётки.

5.5. До опытов К.Дэвиссона и К.Джермера уже имелись экспериментальные данные по наблюдению дифракции рентгеновских волн лучей на кристаллических структурах. Поэтому получив схожие результаты в опытах при рассеивании электронов на кристалле никеля, они автоматически приписали электрону волновые свойства. Однако электрон это «твердая» частица, которая имеет реальную массу покоя, габариты и пр. Не электрон-частица ведет себя как фотон-волна, а рентгеновский фотон имеет (и проявляет) все свойства частицы. Не электрон отражается от препятствия как фотон, а рентгеновский фотон отражается от препятствия как частица.

5.6. Поэтому: никаких «волновых свойств» у электрона (и других частиц) не было, нет и быть не может. И не существует никаких предпосылок и тем более возможностей для изменения данной ситуации.

Часть 6. Выводы.

6.1.Электрон и позитрон являются первыми и основообразующими частицами, наличие которых определило появление кварков, протонов, водорода и всех остальных элементов таблицы Менделеева.

6.2. Исторически, одну частицу назвали электроном и присвоили ей знак минус (материя), а другую назвали позитроном и присвоили ей знак плюс (антиматерия). «Электрический заряд электрона условились считать отрицательным в соответствии с более ранним соглашением называть отрицательным заряд наэлектризованного янтаря» (с).

6.3. Электрон может появиться (появиться = родится) только в паре с позитроном (электрон позитронная пара). Появление в Природе хотя бы одного «непарного» (одиночного) электрона или позитрона является нарушением закона сохранения заряда, общей электронейтральности материи и технически невозможно.

6.4. Образование электрон-позитронной пары в кулоновском поле заряженной частицы происходит после разделения элементарных квантов фотона в продольном направлении на две составляющие части: отрицательную - из которой формируется частица-минус (электрон) и положительную - из которой формируется частица-плюс (позитрон). Разделение электронейтрального фотона в продольном направлении на две абсолютно равные по массе, но разные по зарядам (и магнитным полям) части - это естественное свойство фотона, вытекающее из законов сохранения заряда и др. Наличие «внутри» электрона даже ничтожных количеств «частичек-плюс», а «внутри» позитрона - «частичек-минус» - исключается. Также исключается наличие внутри электрона и протона электронейтральных «частичек» (обрезков, кусочков, обрывков и т.д.) материнского фотона.

6.5. По неизвестным причинам абсолютно все электроны и позитроны рождаются эталонными «максимально-минимальными» частицами (т.е. они не могут быть больше и не может быть меньше по массе, заряду, габаритам и другим характеристикам). Образование из электромагнитных фотонов каких-либо более мелких или более крупных частиц-плюс (позитронов) и частиц-минус (электронов) - исключается.

6.6. Внутреннее строение электрона однозначно предопределено последовательностью его появления: электрон формируется как двухкомпонентная частица, которая на 50% является уплотнённым электрическим полем-минус (электрическим монополем-минус), и на 50% - уплотнённым магнитным полем (магнитным монополем- N). Эти два монополя могут рассматриваться как разнозарядные частицы, между которыми возникают силы взаимного притяжения (сцепления).

6.7. Магнитные монополи существуют, но не в свободном виде, а только как составные части электрона и позитрона. При этом магнитный монополь-(N) является неотъемлемой частью электрона, а магнитный монополь-(S) является неотъемлемой частью позитрона. Наличие магнитной составляющей «внутри» электрона обязательно, поскольку только магнитный монополь-(N) может образовать с однозарядным электрическим монополем-минус прочнейшую (и невиданную по силе) связь.

6.8. Электроны и позитроны обладают наибольшей стабильностью и являются частицами, распад которыхтеоретически и практически невозможен. Они являются неделимыми (по заряду и массе), то есть: самопроизвольное (или принудительное) разделение электрона или позитрона на несколько калиброванных или «разнокалиберных» частей - исключается.

6.9. Электрон вечен и он не может «исчезнуть» до тех пор, пока не встретится с другой частицей, имеющей равные по величине, но противоположные по знаку электрический и магнитный заряды (позитрон).

6.10. Поскольку из электромагнитных волн могут появиться только две эталонные (калиброванные) частицы: электрон и позитрон, то на их основе могут появиться только эталонные кварки, протоны и нейтроны. Поэтому вся видимая (барионная) материя нашей и всех других вселенных состоит из одинаковых химических элементов (таблица Менделеева) и везде действуют единые физические константы и фундаментальные законы, аналогичные «нашим» законам. Появление в любой точке бесконечного пространства «других» элементарных частиц и «других» химических элементов - исключается.

6.11. Вся видимая материя нашей Вселенной образовалась из фотонов (предположительно СВЧ-диапазона) по единственно возможной схеме: фотон → электрон-позитронная пара → дробные частицы → кварки, глюон → протон (водород). Поэтому вся «твёрдая» материя нашей Вселенной (включая Homo sapiens’ов) является уплотнёнными электрическими и магнитными полями фотонов. Других «материй» для её образования в Космосе не было, нет и быть не может.

P.S. Электрон неисчерпаем?